リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Multievent Analysis of Oscillatory Motion of Medium‐Scale Traveling Ionospheric Disturbances Observed by a 630‐nm Airglow Imager Over Tromsø」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Multievent Analysis of Oscillatory Motion of Medium‐Scale Traveling Ionospheric Disturbances Observed by a 630‐nm Airglow Imager Over Tromsø

Yadav, Sneha Shiokawa, K. Oyama, S. Otsuka, Y. 名古屋大学

2020.03

概要

We present a comprehensive investigation on the propagation characteristics of duskside medium‐scale traveling ionospheric disturbances (MSTIDs) using 630.0‐nm airglow emissions over Tromsø (69.6°N, 19.2°E; magnetic latitude: 66.7°N). The unique points of our observation are (1) duskside MSTIDs primarily exhibited eastward motion under quiet conditions but turned to the westward direction associated with geomagnetic disturbances, (2) the westward moving MSTIDs again turned to the eastward direction when the geomagnetic disturbance ceased, (3) the turning of MSTIDs to the westward direction was invariably associated with an increase of the northward component of the magnetic field observed by the local ground‐based magnetometers and with the equatorward expansion of the auroral oval, and (4) the Super Dual Auroral Radar Network convection maps revealed that the location of Tromsø was inside (outside) the duskside convection cell during the time of appearance of westward (eastward) moving MSTIDs. The average eastward and westward velocities of MSTIDs were ~25–80 and ~40–140 m/s, respectively. The Doppler shift measurement of the 630‐nm airglow by a Fabry‐Perot interferometer at Tromsø showed that northeastward winds were predominant during the appearance of eastward moving MSTIDs. These experimental evidences suggest that the oscillatory motion of MSTIDs over high latitudes is driven by the convection electric field. The MSTIDs tend to move eastward under geomagnetically quiet conditions but show westward motion under the influence of convection electric field associated with auroral activities in the duskside of two‐cell convection pattern.

この論文で使われている画像

参考文献

Amorim, D. C. M., Pimenta, A. A., Bittencourt, J. A., & Fagundes, P. R. (2011). Long term study of medium‐scale traveling ionospheric

disturbances using OI 630 nm all sky imaging and ionosonde over Brazilian low latitudes. Journal of Geophysical Research, 116, A06312.

https://doi.org/10.1029/2010JA016090

Aruliah, A. L., Müller‐Wodarg, I. C. F., & Schoendorf, J. (1999). Consequences of geomagnetic history on the high‐latitude thermosphere

and ionosphere: Averages. Journal of Geophysical Research, 104(A12), 28,073–28,088. https://doi.org/10.1029/1999JA900334

Bristow, W. A., Greenwald, R. A., & Samson, J. C. (1994). Identification of high‐latitude acoustic gravity wave sources using the Goose Bay

HF radar. Journal of Geophysical Research, 99(A1), 319–331.

Cai, L., Oyama, S.‐I., Aikio, A., Vanhamäki, H., & Virtanen, I. (2019). Fabry‐Perot interferometer observations of thermospheric horizontal

winds during magnetospheric substorms. Journal of Geophysical Research: Space Physics, 124, 3709–3728. https://doi.org/10.1029/

2018JA026241

Conde, M., Craven, J. D., Immel, T., Hoch, E., Stenbaek‐Nielsen, H., Hallinan, T., et al. (2001). Assimilated observations of thermospheric

winds, the aurora, and ionospheric currents over Alaska. Journal of Geophysical Research, 106(A6), 10,493–10,508. https://doi.org/

10.1029/2000JA000135

Fejer, B. G., & Kelley, M. C. (1980). Ionospheric irregularities. Reviews of Geophysics, 18, 401–454.

Figueiredo, C. A. O. B., Takahashi, H., Wrasse, C. M., Otsuka, Y., Shiokawa, K., & Barros, D. (2018). Medium‐scale traveling ionospheric

disturbances observed by detrended total electron content maps over Brazil. Journal of Geophysical Research: Space Physics, 123,

2215–2227. https://doi.org/10.1002/2017JA025021

Forbes, J. M., Bruinsma, S. L., Doornbos, E., & Zhang, X. (2016). Gravity wave‐induced variability of the middle thermosphere. Journal of

Geophysical Research: Space Physics, 121, 6914–6923. https://doi.org/10.1002/2016JA022923

Fritts, D. C., Lund, T. S., & Hultqvist, B. (2011). Gravity wave influences in the thermosphere and ionosphere: Observations and recent

modeling. In M. A. Abdu, & D. Pancheva (Eds.), Aeron. Earth's atmos ionos (Chap. 8, (pp. 109–130). Dordrecht: Springer. https://doi.org/

10.1007/978‐94‐007‐0326‐1

Garcia, F. J., Kelley, M. C., Makela, J. J., & Huang, C.‐S. (2000). Airglow observations of mesoscale low‐velocity traveling ionospheric

disturbances at midlatitudes. Journal of Geophysical Research, 105, 18,407–18,415.

Garcia, R. F., Bruinsma, S., Massarweh, L., & Doornbos, E. (2016). Medium‐scale gravity wave activity in the thermosphere inferred from

GOCE data. Journal of Geophysical Research: Space Physics, 121, 8089–8102. https://doi.org/10.1002/2016JA022797

Gjerloev, J. W. (2012). The SuperMAG data processing technique. Journal of Geophysical Research, 117, A09213. https://doi.org/10.1029/

2012JA017683

Hargreaves, J. K. (1992). The solar‐terrestrial environment (p. 7). Cambridge: Cambridge University Press.

Heppner, J. P., & Maynard, N. C. (1987). Empirical high‐latitude electric field models. Journal of Geophysical Research, 92(A5), 4467–4489.

Hines, C. O. (1960). Internal atmospheric gravity waves at ionospheric heights. Canadian Journal of Physics, 38(11), 1441–1481. https://doi.

org/10.1139/p60‐150

Hocke, K., & Schlegel, K. (1996). A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982‐1995. Annales

Geophysicae, 14, 917–940.

Huang, F., Lei, J., Dou, X., Luan, X., & Zhong, J. (2018). Nighttime medium‐scale traveling ionospheric disturbances from airglow imager

and Global Navigation Satellite Systems observations. Geophysical Research Letters, 45, 31–38. https://doi.org/10.1002/2017GL076408

Hunsucker, R. D. (1982). Atmospheric gravity waves generated in the high‐latitude ionosphere: A review. Reviews of Geophysics, 20(2),

293–315. https://doi.org/10.1029/RG020i002p00293

Keskinen, M. J., & Ossakow, S. L. (1983). Theories of high latitude ionospheric irregularities. Radio Science, 18, 1077.

Kotake, N., Otsuka, Y., Tsugawa, T., Ogawa, T., & Saito, A. (2007). Statistical study of medium‐scale traveling ionospheric disturbances

observed with the GPS networks in Southern California. Earth, Planets and Space, 59, 95–102.

17 of 19

Journal of Geophysical Research: Space Physics

10.1029/2019JA027598

Kubota, M., Conde, M., Ishii, M., Murayama, Y., & Jin, H. (2011). Characteristics of nighttime medium‐scale traveling ionospheric disturbances observed over Alaska. Journal of Geophysical Research, 116, A05307. https://doi.org/10.1029/2010JA016212

Kubota, M., Shiokawa, K., Ejiri, M. K., Otsuka, Y., Ogawa, T., Sakanoi, T., et al. (2000). Traveling ionospheric disturbances observed in the

OI 630‐nm nightglow images over Japan by using a multi‐point imager network during the FRONT campaign. Geophysical Research

Letters, 27(24), 4037–4040.

Makela, J. J., Miller, E. S., & Talaat, E. R. (2010). Nighttime medium‐scale traveling ionospheric disturbances at low geomagnetic latitudes.

Geophysical Research Letters, 37, L24104. https://doi.org/10.1029/2010GL045922

Makela, J. J., & Otsuka, Y. (2011). Overview of nighttime ionospheric instabilities at low‐ and mid‐latitudes: Coupling aspects resulting in

structuring at the mesoscale. Space Science Reviews, 168(1–4), 419–440. https://doi.org/10.1007/s11214‐011‐9816‐6

Martinis, C., Baumgardner, J., Wroten, J., & Mendillo, M. (2010). Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging

at Arecibo. Geophysical Research Letters, 37, L11103. https://doi.org/10.1029/2010GL043569

Martinis, C., Baumgardner, J., Wroten, J., & Mendillo, M. (2011). All‐sky imaging observations of conjugate medium‐scale traveling

ionospheric disturbances in the American sector. Journal of Geophysical Research, 116, A05326. https://doi.org/10.1029/2010JA016264

Narayanan, V. L., Shiokawa, K., Otsuka, Y., & Neudegg, D. (2018). On the role of thermospheric winds and sporadic E layers in the formation and evolution of electrified MSTIDs in geomagnetic conjugate regions. Journal of Geophysical Research: Space Physics, 123,

6957–6980. https://doi.org/10.1029/2018JA025261

Nishioka, M., Saito, A., & Tsugawa, T. (2009). Super‐medium‐scale traveling ionospheric disturbance observed at midlatitude during the

geomagnetic storm on 10 November 2004. Journal of Geophysical Research, 114, A07310. https://doi.org/10.1029/2008JA013581

Oinats, A. V., Nishitani, N., Ponomarenko, P., Berngardt, O. I., & Ratovsky, K. G. (2016). Statistical characteristics of medium‐scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data. Earth, Planets and Space, 68(1), 1–13.

https://doi.org/10.1186/s40623‐016‐0390‐8

Otsuka, Y., Shiokawa, K., Ogawa, T., & Wilkinson, P. (2004). Geomagnetic conjugate observations of medium‐scale traveling ionospheric

disturbances at midlatitude using all‐sky airglow imagers. Geophysical Research Letters, 31, L15803. https://doi.org/10.1029/

2004GL020262

Otsuka, Y., Suzuki, K., Nakagawa, S., Nishioka, M., Shiokawa, K., & Tsugawa, T. (2013). GPS observations of medium‐scale traveling

ionospheric disturbances over Europe. Annales Geophysicae, 31(2), 163–172. https://doi.org/10.5194/angeo‐31‐163‐2013

Perkins, F. (1973). Spread F and ionospheric currents. Journal of Geophysical Research, 78, 218–226.

Rishbeth, H. (1971). The F‐layer dynamo. Planetary and Space Science, 19, 263.

Ruohoniemi, M., & Baker, K. B. (1998). Large‐scale imaging of high‐latitude convection with super dual auroral radar network HF radar

observations. Journal of Geophysical Research, 103, 20,797–20,811.

Saito, A., Fukao, S., & Miyazaki, S. (1998). High resolution mapping of TEC perturbations with the GSI GPS network over Japan.

Geophysical Research Letters, 25, 3079–3082. https://doi.org/10.1029/98GL52361

Saito, A., Iyemori, T., Sugiura, M., Maynard, N. C., Aggson, T. L., Brace, L. H., et al. (1995). Conjugate occurrence of the electric‐field

fluctuations in the nighttime midlatitude ionosphere. Journal of Geophysical Research, 100, 21,439–21,451. https://doi.org/10.1029/

95JA01505

Šauli, P., Abry, P., Altadill, D., & Boska, J. (2006). Detection of the wave‐like structures in the F region electron density: Two station

measurements. Studia Geophysica et Geodaetica, 50(1), 131–146. https://doi.org/10.1007/s11200‐006‐0007‐y

Shiokawa, K., Ihara, C., Otsuka, Y., & Ogawa, T. (2003). Statistical study of nighttime medium‐scale traveling ionospheric disturbances

using midlatitude airglow images. Journal of Geophysical Research, 108(A1), 1052. https://doi.org/10.1029/2002JA009491

Shiokawa, K., Kadota, T., Otsuka, Y., Ogawa, T., Nakamura, T., & Fukao, S. (2003). A two‐channel Fabry‐Perot interferometer with

thermoelectric‐cooled CCD detectors for neutral wind measurement in the upper atmosphere. Earth, Planets and Space, 55(5), 271–275.

Shiokawa, K., Katoh, Y., Satoh, M., Ejiri, M. K., Ogawa, T., Nakamura, T., et al. (1999). Development of optical mesosphere thermosphere

imagers (OMTI). Earth, Planets and Space, 51, 887–896.

Shiokawa, K., Mori, M., Otsuka, Y., Oyama, S., & Nozawa, S. (2012). Motion of high‐latitude nighttime medium‐scale traveling ionospheric

disturbances associated with auroral brightening. Journal of Geophysical Research, 117, A10316. https://doi.org/10.1029/2012JA017928

Shiokawa, K., Mori, M., Otsuka, Y., Oyama, S., Nozawa, S., Suzuki, S., & Connors, M. (2013). Observation of nighttime medium‐scale

travelling ionospheric disturbances by two 630‐nm airglow imagers near the auroral zone. Journal of Atmospheric and Solar‐Terrestrial

Physics, 103, 184–194. https://doi.org/10.1016/j.jastp.2013.03.024

Shiokawa, K., Otsuka, Y., & Ogawa, T. (2009). Propagation characteristics of nighttime mesospheric and thermospheric waves observed by

optical mesosphere thermosphere imagers at middle and low latitudes. Earth, Planets and Space, 61, 479–491.

Shiokawa, K., Otsuka, Y., Oyama, S., Nozawa, S., Satoh, M., Katoh, Y., et al. (2012). Development of low‐cost sky‐scanning Fabry‐Perot

interferometers for airglow and auroral studies. Earth, Planets and Space, 64(11), 1033–1046. https://doi.org/10.5047/eps.2012.05.004

Shiokawa, K., Otsuka, Y., Tsugawa, T., Ogawa, T., Saito, A., Ohshima, K., et al. (2005). Geomagnetic conjugate observation of nighttime

medium‐scale and large‐scale traveling ionospheric disturbances: FRONT3 campaign. Journal of Geophysical Research, 110, A05303.

https://doi.org/10.1029/2004JA010845

Sivakandan, M., Chakrabarty, D., Ramkumar, T. K., Guharay, A., Taori, A., & Parihar, N. (2019). Evidence for deep ingression of the

midlatitude MSTID into as low as ~3.5° magnetic latitude. Journal of Geophysical Research: Space Physics, 124, 749–764. https://doi.org/

10.1029/2018JA026103

Ssessanga, N., Kim, Y. H., & Jeong, S.‐H. (2017). A statistical study on the F2 layer vertical variation during nighttime medium‐scale traveling ionospheric disturbances. Journal of Geophysical Research: Space Physics, 122, 3586–3601. https://doi.org/10.1002/2016JA023463

Tanskanen, E. I. (2009). A comprehensive high‐throughput analysis of substorms observed by IMAGE magnetometer network: Years

1993‐2003 examined. Journal of Geophysical Research, 114, A05204. https://doi.org/10.1029/2008JA013682

Tsugawa, T., Otsuka, Y., Coster, A. J., & Saito, A. (2007). Medium‐scale traveling ionospheric disturbances detected with dense and wide

TEC maps over North America. Geophysical Research Letters, 34, L22101. https://doi.org/10.1029/2007GL031663

Vadas, S. L., Fritts, D. C., & Alexander, M. J. (2003). Mechanism for the generation of secondary waves in wave breaking regions. Journal of

the Atmospheric Sciences, 60(1), 194–214. https://doi.org/10.1175/1520‐0469(2003

Virginia Tech SuperDARN group (2015). Convection map plotting on‐line tool. << ENTER APPROPRIATE URL HERE >>Accessed on

DAY ‐ MONTH ‐ YEAR

Wang, H., Zhang, K. D., Wan, X., & Lühr, H. (2017). Universal time variation of high‐latitude thermospheric disturbance wind in response

to a substorm. Journal of Geophysical Research: Space Physics, 122, 4638–4653. https://doi.org/10.1002/2016JA023630

Xu, H., Shiokawa, K., Oyama, S., & Otsuka, Y. (2019). Thermospheric wind variations observed by a Fabry‐Perot interferometer at Tromsø,

Norway, at substorm onsets. Earth. Planets and Space, 71(1), 1–13. https://doi.org/10.1186/s40623‐019‐1072‐0

YADAV ET AL.

18 of 19

Journal of Geophysical Research: Space Physics

10.1029/2019JA027598

Yokoyama, T., & Hysell, D. L. (2010). A new midlatitude ionosphere electrodynamics coupling model (MIECO): Latitudinal dependence

and propagation of medium‐scale traveling ionospheric disturbances. Geophysical Research Letters, 37, L08105. https://doi.org/10.1029/

2010GL042898

Yokoyama, T., Hysell, D. L., Otsuka, Y., & Yamamoto, M. (2009). Three‐dimensional simulation of the coupled Perkins and Es‐layer

instabilities in the nighttime midlatitude ionosphere. Journal of Geophysical Research, 114, A03308. https://doi.org/10.1029/

2008JA013789

YADAV ET AL.

19 of 19

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る