リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Extracellular laminin regulates hematopoietic potential of pluripotent stem cells through integrin β1-ILK-β-catenin-JUN axis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Extracellular laminin regulates hematopoietic potential of pluripotent stem cells through integrin β1-ILK-β-catenin-JUN axis

Yuzuriha, Akinori 京都大学 DOI:10.14989/doctor.k23383

2021.05.24

概要

Recombinant matrices have enabled feeder cell-free maintenance cultures of human pluripotent stem cells (hPSCs), with laminin 511-E8 fragment (LM511-E8) being widely used. However, we herein report that hPSCs maintained on LM511-E8 resist differentiating to multipotent hematopoietic progenitor cells (HPCs), unlike hPSCs maintained on LM421-E8 or LM121-E8. The latter two LM-E8s bound weakly to hPSCs compared with LM511-E8 and activated the canonical Wnt/β-catenin signaling pathway. Moreover, the extracellular LM-E8- dependent preferential hematopoiesis was associated with a higher expression of integrin β1 (ITGB1) and downstream integrin-linked protein kinase (ILK), β-catenin and phosphorylated JUN. Accordingly, the lower coating concentration of LM511-E8 or addition of a Wnt/β-catenin signaling activator, CHIR99021, facilitated higher HPC yield. In contrast, the inhibition of ILK, Wnt or JNK by inhibitors or mRNA knockdown suppressed the HPC yield. These fndings suggest that extracellular laminin scaffolds modulate the hematopoietic differentiation potential of hPSCs by activating the ITGB1-ILK-β-catenin-JUN axis at the undifferentiated stage. Finally, the combination of low-concentrated LM511-E8 and a revised hPSC-sac method, which adds bFGF, SB431542 and heparin to the conventional method, enabled a higher yield of HPCs and higher rate for defnitive hematopoiesis, suggesting a useful protocol for obtaining differentiated hematopoietic cells from hPSCs in general.

この論文で使われている画像

参考文献

Boisset, J.C., Van Cappellen, W., Andrieu-Soler, C., Galjart, N., Dzierzak, E., Robin, C., 2010. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116–120. https://doi.org/10.1038/nature08764.

Burkhalter, R.J., Symowicz, J., Hudson, L.G., Gottardi, C.J., Stack, M.S., 2011. Integrin regulation of β-catenin signaling in ovarian carcinoma. J. Biol. Chem. 286, 23467–23475. https://doi.org/10.1074/jbc.M110.199539.

Chao, M.P., Gentles, A.J., Chatterjee, S., Lan, F., Reinisch, A., Corces, M.R., Xavy, S., Shen, J., Haag, D., Chanda, S., Sinha, R., Morganti, R.M., Nishimura, T., Ameen, M., Wu, H., Wernig, M., Wu, J.C., Majeti, R., 2017. Human AML-iPSCs ReacquireLeukemic Properties after Differentiation and Model Clonal Variation of Disease. CellStem Cell 20, 329–344.e7. https://doi.org/10.1016/j.stem.2016.11.018.

Ditadi, A., Sturgeon, C.M., Tober, J., Awong, G., Kennedy, M., Yzaguirre, A.D., Azzola, L.,Ng, E.S., Stanley, E.G., French, D.L., Cheng, X., Gadue, P., Speck, N.A., Elefanty, A.G., Keller, G., 2015. Human defnitive haemogenic endothelium and arterial vascularendothelium represent distinct lineages. Nat. Cell Biol. 17, 580–591. https://doi.org/10.1038/ncb3161.

Doi, D., Samata, B., Katsukawa, M., Kikuchi, T., Morizane, A., Ono, Y., Sekiguchi, K.,Nakagawa, M., Parmar, M., Takahashi, J., 2014. Isolation of Human InducedPluripotent Stem Cell-Derived Dopaminergic Progenitors by Cell Sorting forSuccessful Transplantation. Stem Cell Reports 2, 337–350. https://doi.org/10.1016/j.stemcr.2014.01.013.

Ekblom, P., Lonai, P., Talts, J.F., 2003. Expression and biological role of laminin-1.Matrix Biol. 22, 35–47. https://doi.org/10.1016/S0945-053X(03)00015-5.

Eslin, D.E., Zhang, C., Samuels, K.J., Rauova, L., Zhai, L., Niewiarowski, S., Cines, D.B.,Poncz, M., Kowalska, M.A., 2004. Transgenic mice studies demonstrate a role forplatelet factor 4 in thrombosis: Dissociation between anticoagulant andantithrombotic effect of heparin. Blood 104, 3173–3180. https://doi.org/10.1182/blood-2003-11-3994.

Flamme, I., Risau, W., 1992. Induction of vasculogenesis and hematopoiesis in vitro. Development 116, 435–439.

Hansen, K., Abrass, C.K., 2003. Laminin-8/9 is synthesized by rat glomerular mesangial cells and is required for PDGF-induced mesangial cell migration. Kidney Int. 64, 110–118. https://doi.org/10.1046/j.1523-1755.2003.00039.x.

Hansen, M., von Lindern, M., van den Akker, E., Varga, E., 2019. Human-induced pluripotent stem cell-derived blood products: state of the art and future directions. FEBS Lett. 593, 3288–3303. https://doi.org/10.1002/1873-3468.13599.

Hirata, S., Takayama, N., Jono-Ohnishi, R., Endo, H., Nakamura, S., Dohda, T., Nishi, M., Hamazaki, Y., Ishii, E.I., Kaneko, S., Otsu, M., Nakauchi, H., Kunishima, S., Eto, K., 2013. Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling. J. Clin. Invest. 123, 3802–3814. https://doi.org/10.1172/JCI64721.

Huang, K., Wu, Z., Liu, Z., Hu, G., Yu, J., Chang, K.H., Kim, K.P., Le, T., Faull, K.F., Rao, N., Gennery, A., Xue, Z., Wang, C.Y., Pellegrini, M., Fan, G., 2014. Selective demethylation and altered gene expression are associated with ICF syndrome in human-induced pluripotent stem cells and mesenchymal stem cells. Hum. Mol. Genet. 23, 6448–6457. https://doi.org/10.1093/hmg/ddu365.

Iriguchi, S., Yasui, Y., Kawai, Y., Arima, S., Kunitomo, M., Sato, T., Ueda, T., Minagawa, A., Mishima, Y., Yanagawa, N., Baba, Y., Miyake, Y., Nakayama, K., Takiguchi, M., Shinohara, T., Nakatsura, T., Yasukawa, M., Kassai, Y., Hayashi, A., Kaneko, S., 2021. A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy. Nat. Commun. 12, 1–15. https:// doi.org/10.1038/s41467-020-20658-3.

Ito, Y., Nakamura, S., Sugimoto, N., Shigemori, T., Kato, Y., Ohno, M., Sakuma, S., Ito, K., Kumon, H., Hirose, H., Okamoto, H., Nogawa, M., Iwasaki, M., Kihara, S., Fujio, K., Matsumoto, T., Higashi, N., Hashimoto, K., Sawaguchi, A., Harimoto, K. ichi, Nakagawa, M., Yamamoto, T., Handa, M., Watanabe, N., Nishi, E., Arai, F., Nishimura, S., Eto, K., 2018. Turbulence Activates Platelet Biogenesis to Enable Clinical Scale Ex Vivo Production. Cell 1–13. 10.1016/j.cell.2018.06.011.

Kajiwara, M., Aoi, T., Okita, K., Takahashi, R., Inoue, H., Takayama, N., Endo, H., Eto, K., Toguchida, J., Uemoto, S., Yamanaka, S., 2012. Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc. Natl. Acad. Sci. U. S. A. 109, 12538–12543. https://doi.org/10.1073/pnas.1209979109.

Khandanpour, C., Sharif-askari, E., Vassen, L., Gaudreau, M., Zhu, J., Paul, W.E., Okayama, T., Kosan, C., Mo, T., 2010. Evidence that Growth factor independence 1b regulates dormancy and peripheral blood mobilization of hematopoietic stem cells. Blood 116, 5149–5161. https://doi.org/10.1182/blood-2010-04-280305.The.

Kitajima, K., Nakajima, M., Kanokoda, M., Kyba, M., Dandapat, A., Tolar, J., Saito, M.K., Toyoda, M., Umezawa, A., Hara, T., 2016. GSK3β inhibition activates the CDX/HOX pathway and promotes hemogenic endothelial progenitor differentiation from human pluripotent stem cells. Exp. Hematol. 44, 68–74.e10. https://doi.org/ 10.1016/j.exphem.2015.09.007.

Koyanagi-Aoi, M., Ohnuki, M., Takahashi, K., Okita, K., Noma, H., Sawamura, Y., Teramoto, I., Narita, M., Sato, Y., Ichisaka, T., Amanoa, N., Watanabe, A., Morizane, A., Yamada, Y., Sato, T., Takahashi, J., Yamanaka, S., 2013. Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc. Natl. Acad. Sci. U. S. A. 110, 20569–20574. https://doi. org/10.1073/pnas.1319061110.

Loughran, S.J., Kruse, E.A., Hacking, D.F., Graaf, C.A. De, Hyland, C.D., Willson, T.A., Henley, K.J., Ellis, S., Voss, A.K., Metcalf, D., Hilton, D.J., Alexander, W.S., Kile, B.T., 2008. The transcription factor Erg is essential for defnitive hematopoiesis and the function of adult hematopoietic stem cells. Nat. Immunol. 9, 810-. https://doi.org/10.1038/ni.1617.

Minagawa, A., Yoshikawa, T., Yasukawa, M., Hotta, A., Kunitomo, M., Iriguchi, S., Takiguchi, M., Kassai, Y., Imai, E., Yasui, Y., Kawai, Y., Zhang, R., Uemura, Y., Miyoshi, H., Nakanishi, M., Watanabe, A., Hayashi, A., Kawana, K., Fujii, T., Nakatsura, T., Kaneko, S., 2018. Enhancing T Cell Receptor Stability in Rejuvenated iPSC-Derived T Cells Improves Their Use in Cancer Immunotherapy. Cell Stem Cell 23, 850–858.e4. https://doi.org/10.1016/j.stem.2018.10.005.

Miyauchi, M., Koya, J., Arai, S., Yamazaki, S., Honda, A., Kataoka, K., Yoshimi, A., Taoka, K., Kumano, K., Kurokawa, M., 2018. ADAM8 Is an Antigen of Tyrosine Kinase Inhibitor-Resistant Chronic Myeloid Leukemia Cells Identifed by PatientDerived Induced Pluripotent Stem Cells. Stem Cell Reports 10, 1115–1130. https:// doi.org/10.1016/j.stemcr.2018.01.015.

Miyazaki, T., Futaki, S., Suemori, H., Taniguchi, Y., Yamada, M., Kawasaki, M., Hayashi, M., Kumagai, H., Nakatsuji, N., Sekiguchi, K., Kawase, E., 2012. Laminin E8 fragments support effcient adhesion and expansion of dissociated human pluripotent stem cells. Nat. Commun. 3, 1236. https://doi.org/10.1038/ ncomms2231.

Miyazaki, T., Isobe, T., Nakatsuji, N., Suemori, H., 2017. Effcient Adhesion Culture of Human Pluripotent Stem Cells Using Laminin Fragments in an Uncoated Manner. Sci. Rep. 7, 41165. https://doi.org/10.1038/srep41165.

Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K., Morizane, A., Doi, D., Takahashi, J., Nishizawa, M., Yoshida, Y., Toyoda, T., Osafune, K., Sekiguchi, K., Yamanaka, S., 2015. A novel effcient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4, 3594. https://doi.org/10.1038/srep03594.

Nakamura, S., Takayama, N., Hirata, S., Seo, H., Endo, H., Ochi, K., Fujita, K., Koike, T., Harimoto, K., Dohda, T., Watanabe, A., Okita, K., Takahashi, N., Sawaguchi, A., Yamanaka, S., Nakauchi, H., Nishimura, S., Eto, K., 2014. Expandable Megakaryocyte Cell Lines Enable Clinically Applicable Generation of Platelets from Human Induced Pluripotent Stem Cells. Cell Stem Cell 1–14. https://doi.org/ 10.1016/j.stem.2014.01.011.

Nakashima, Y., Omasa, T., 2016. What Kind of Signaling Maintains Pluripotency andViability in Human-Induced Pluripotent Stem Cells Cultured on Laminin-511 withSerum-Free Medium? Biores. Open Access 5 (1), 84–93. https://doi.org/10.1089/biores.2016.0001.

Nazor, K.L., Altun, G., Lynch, C., Tran, H., Harness, J.V., Slavin, I., Garitaonandia, I.,Müller, F.J., Wang, Y.C., Boscolo, F.S., Fakunle, E., Dumevska, B., Lee, S., Park, H.S.,Olee, T., D’Lima, D.D., Semechkin, R., Parast, M.M., Galat, V., Laslett, A.L.,Schmidt, U., Keirstead, H.S., Loring, J.F., Laurent, L.C., 2012. Recurrent variations inDNA methylation in human pluripotent stem cells and their differentiatedderivatives. Cell Stem Cell 10, 620–634. https://doi.org/10.1016/j.stem.2012.02.013.

Nerlov, C., Graf, T., 1998. PU . 1 induces myeloid lineage commitment in multipotenthematopoietic progenitors. Genes Dev. 12, 15. 2403–2412.

Ng, E.S., Azzola, L., Bruveris, F.F., Calvanese, V., Phipson, B., Vlahos, K., Hirst, C.,Jokubaitis, V.J., Yu, Q.C., Maksimovic, J., Liebscher, S., Januar, V., Zhang, Z.,Williams, B., Conscience, A., Durnall, J., Jackson, S., Costa, M., Elliott, D.,Haylock, D.N., Nilsson, S.K., Saffery, R., Schenke-Layland, K., Oshlack, A.,Mikkola, H.K.A., Stanley, E.G., Elefanty, A.G., 2016. Differentiation of humanembryonic stem cells to HOXA+ hemogenic vasculature that resembles the aortagonad-mesonephros. Nat. Biotechnol. 34, 1168–1179. https://doi.org/10.1038/nbt.3702.

Nishimura, T., Kaneko, S., Kawana-tachikawa, A., Tajima, Y., Goto, H., Zhu, D., Nakayama-hosoya, K., Iriguchi, S., Uemura, Y., Shimizu, T., Takayama, N., Yamada, D., Nishimura, K., Ohtaka, M., Watanabe, N., Takahashi, S., Iwamoto, A., Koseki, H., Nakanishi, M., Eto, K., Nakauchi, H., 2013. Generation of Rejuvenated Antigen-Specifc T Cells by Reprogramming to Pluripotency and Redifferentiation. Cell Stem Cell 12, 114–126. https://doi.org/10.1016/j.stem.2012.11.002.

Nishiuchi, R., Takagi, J., Hayashi, M., Ido, H., Yagi, Y., Sanzen, N., Tsuji, T., Yamada, M., Sekiguchi, K., 2006. Ligand-binding specifcities of laminin-binding integrins: A comprehensive survey of laminin-integrin interactions using recombinant α3β1, α6β1, α7β1 and α6β4 integrins. Matrix Biol. 25, 189–197. https://doi.org/10.1016/j. matbio.2005.12.001.

Nishizawa, M., Chonabayashi, K., Nomura, M., Tanaka, A., Nakamura, M., Inagaki, A.,Nishikawa, M., Takei, I., Oishi, A., Tanabe, K., Ohnuki, M., Yokota, H., KoyanagiAoi, M., Okita, K., Watanabe, A., Takaori-Kondo, A., Yamanaka, S., Yoshida, Y., 2016. Epigenetic Variation between Human Induced Pluripotent Stem Cell Lines Is an Indicator of Differentiation Capacity. Cell Stem Cell 19, 341–354. https://doi. org/10.1016/j.stem.2016.06.019.

Okita, K., Yamakawa, T., Matsumura, Y., Sato, Y., Amano, N., Watanabe, A., Goshima, N., Yamanaka, S., 2013. An effcient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31, 458–466. https://doi.org/10.1002/stem.1293.

Oloumi, A., Syam, S., Dedhar, S., 2006. Modulation of Wnt3a-mediated nuclear β-cateninaccumulation and activation by integrin-linked kinase in mammalian cells.

Oncogene 25, 7747–7757. https://doi.org/10.1038/sj.onc.1209752.

Patton, B.L., Cunningham, J.M., Thyboll, J., Kortesmaa, J., Westerblad, H., Edstrom, ¨ L., Tryggvason, K., Sanes, J.R., 2001. Properly formed but improperly localized synaptic specializations in the absence of laminin α4. Nat. Neurosci. 4, 597–604. https://doi. org/10.1038/88414.

Piva, M.B.R., Jakubzig, B., Bendas, G., 2017. Integrin activation contributes to lower cisplatin sensitivity in MV3 melanoma cells by inducing the Wnt signalling pathway. Cancers (Basel). 9, 125. https://doi.org/10.3390/cancers9090125.

Polo, J.M., Liu, S., Figueroa, M.E., Kulalert, W., Eminli, S., Tan, K.Y., Apostolou, E.,Stadtfeld, M., Li, Y., Shioda, T., Natesan, S., Wagers, A.J., Melnick, A., Evans, T.,Hochedlinger, K., 2010. Cell type of origin infuences the molecular and functionalproperties of mouse induced pluripotent stem cells. Nat. Biotechnol. 28, 848–855.https://doi.org/10.1038/nbt.1667.

Qu´elo, I., Gauthier, C., Hannigan, G.E., Dedhar, S., St-Arnaud, R., 2004. Integrin-linked kinase regulates the nuclear entry of the c-Jun coactivator α-NAC and its coactivation potency. J. Biol. Chem. 279, 43893–43899. https://doi.org/10.1074/ jbc.M406310200.

Ramírez-Bergeron, D.L., Runge, A., Cowden Dahl, K.D., Fehling, H.J., Keller, G.,Simon, M.C., 2004. Hypoxia affects mesoderm and enhances hemangioblastspecifcation during early development. Development 131, 4623–4634. https://doi.org/10.1242/dev.01310.

Sano, S., Eto, K., Takayama N., Nakauchi, H., Culture method related to differentiation of pluripotent stem cells into blood cells. Patent.PCT/JP2011/070563.

Sasaki, K., Yokobayashi, S., Nakamura, T., Okamoto, I., Yabuta, Y., Kurimoto, K., Ohta, H., Moritoki, Y., Iwatani, C., Tsuchiya, H., Nakamura, S., Sekiguchi, K.,

Sakuma, T., Yamamoto, Takashi, Mori, T., Woltjen, K., Nakagawa, M., Yamamoto, Takuya, Takahashi, K., Yamanaka, S., Saitou, M., 2015. Robust In Vitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell 17, 178–194. https://doi.org/10.1016/j.stem.2015.06.014.

Sasaki, T., Takagi, J., Giudici, C., Yamada, Y., Arikawa-Hirasawa, E., Deutzmann, R., Timpl, R., Sonnenberg, A., B¨ achinger, H.P., Tonge, D., 2010. Laminin-121- Recombinant expression and interactions with integrins. Matrix Biol. 29, 484–493. https://doi.org/10.1016/j.matbio.2010.05.004.

Shibata, S., Hayashi, R., Okubo, T., Kudo, Y., Katayama, T., Ishikawa, Y., Toga, J., Yagi, E., Honma, Y., Quantock, A.J., Sekiguchi, K., Nishida, K., 2018. Selective Laminin-Directed Differentiation of Human Induced Pluripotent Stem Cells into Distinct Ocular Lineages. Cell Rep. 25, 1668–1679.e5. https://doi.org/10.1016/j. celrep.2018.10.032.

Spivak-Kroizman, T., Lemmon, M.A., Dikic, I., Ladbury, J.E., Pinchasi, D., Huang, J., Jaye, M., Crumley, G., Schlessinger, J., Lax, I., 1994. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 79, 1015–1024. https://doi.org/10.1016/ 0092-8674(94)90032-9.

Sturgeon, C.M., Ditadi, A., Awong, G., Kennedy, M., Keller, G., 2014. Wnt signaling controls the specifcation of defnitive and primitive hematopoiesis from human pluripotent stem cells. Nat. Biotechnol. 32, 554–561. https://doi.org/10.1038/ nbt.2915.

Sturgeon, C.M., Ditadi, A., Clarke, R.L., Keller, G., 2013. Defning the path to hematopoietic stem cells. Nat. Biotechnol. 31, 416–418. https://doi.org/10.1038/ nbt.2571.

Susek, K.H., Korpos, E., Huppert, J., Wu, C., Savelyeva, I., Rosenbauer, F., MüllerTidow, C., Koschmieder, S., Sorokin, L., 2018. Bone marrow laminins infuence hematopoietic stem and progenitor cell cycling and homing to the bone marrow. Matrix Biol. 67, 47–62. https://doi.org/10.1016/j.matbio.2018.01.007.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S., 2007. Induction of pluripotent stem cells from adult human fbroblasts by defned factors. Cell 131, 861–872. https://doi.org/10.1016/j. cell.2007.11.019.

Takayama, N., Nishikii, H., Usui, J., Tsukui, H., Sawaguchi, A., Hiroyama, T., Eto, K., Nakauchi, H., 2008. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood 111, 5298–5306. https://doi.org/10.1182/blood-2007-10- 117622.

Takebe, T., Sekine, K., Kimura, M., Yoshizawa, E., Ayano, S., Koido, M., Funayama, S., Nakanishi, N., Hisai, T., Kobayashi, T., Kasai, T., Kitada, R., Mori, A., Ayabe, H., Ejiri, Y., Amimoto, N., Yamazaki, Y., Ogawa, S., Ishikawa, M., Kiyota, Y., Sato, Y., Nozawa, K., Okamoto, S., Ueno, Y., Taniguchi, H., 2017. Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells. Cell Rep. 21, 2661–2670. https://doi.org/10.1016/j.celrep.2017.11.005.

Takei, H., Edahiro, Y., Mano, S., Masubuchi, N., Mizukami, Y., Imai, M., Morishita, S., Misawa, K., Ochiai, T., Tsuneda, S., Endo, H., Nakamura, S., Eto, K., Ohsaka, A., Araki, M., Komatsu, N., 2018. Skewed megakaryopoiesis in human induced pluripotent stem cell-derived haematopoietic progenitor cells harbouring calreticulin mutations. Br. J. Haematol. 181, 791–802. https://doi.org/10.1111/ bjh.15266.

Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., Jones, J.M., 1998. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science (80-. ). 282, 1145–1147. https://doi.org/10.1126/ science.282.5391.1145.

Troussard, A.A., Tan, C., Yoganathan, T.N., Dedhar, S., 1999. Cell-extracellular matrix interactions stimulate the AP-1 transcription factor in an integrin-linked kinase- and glycogen synthase kinase 3-dependent manner. Mol. Cell. Biol. 19, 7420–7427.

Umekage, M., Sato, Y., Takasu, N., 2019. Overview : an iPS cell stock at CiRA. Infamm. Regen. 39, 1–5.

Vinjamur, D.S., Bauer, D.E., Orkin, S.H., 2018. Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. Br. J. Haematol. 180, 630–643. https://doi.org/10.1111/bjh.15038.

Virtanen, I., Gullberg, D., Rissanen, J., Kivilaakso, E., Kiviluoto, T., Laitinen, L.A., Lehto, V.P., Ekblom, P., 2000. Laminin α1-chain shows a restricted distribution in epithelial basement membranes of fetal and adult human tissues. Exp. Cell Res. 257, 298–309. https://doi.org/10.1006/excr.2000.4883.

Wang, C., Tang, X., Sun, X., Miao, Z., Lv, Y., Yang, Y., Zhang, H., Zhang, P., Liu, Y., Du, L., Gao, Y., Yin, M., Ding, M., Deng, H., 2012. TGFβ inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy. Cell Res. 22, 194–207. https://doi.org/ 10.1038/cr.2011.138.

White, M.D., Zenker, J., Bissiere, S., Plachta, N., 2017. How cells change shape and position in the early mammalian embryo. Curr. Opin. Cell Biol. 44, 7–13. https:// doi.org/10.1016/j.ceb.2016.11.002.

Yap, L., Tay, H.G., Nguyen, M.T.X., Tjin, M.S., Tryggvason, K., 2019. Laminins in Cellular Differentiation. Trends Cell Biol. 29, 987–1000. https://doi.org/10.1016/j. tcb.2019.10.001.

Zhang, T., Huang, K., Zhu, Y., Wang, T., Shan, Y., Long, B., Li, Y., Chen, Q., Wang, P., Zhao, S., Li, D., Wu, C., Kang, B., Gu, J., Mai, Y., Wang, Q., Li, J., Zhang, Y., Liang, Z., Guo, L., Wu, F., Su, S., Wang, J., Gao, M., Zhong, X., Liao, B., Chen, J., Zhang, X., Shu, X., Pei, D., Nie, J., Pan, G., 2019. Vitamin C– dependent lysine demethylase 6 (KDM6)mediated demethylation promotes a chromatin state that supports the endothelial-to-hematopoietic transition. J. Biol. Chem. 294, 13657–13670. https:// doi.org/10.1074/jbc.RA119.009757.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る