リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「食道扁平上皮癌患者の背景食道非腫瘍粘膜におけるアルコール曝露後のNRF2標的遺伝子発現低下」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

食道扁平上皮癌患者の背景食道非腫瘍粘膜におけるアルコール曝露後のNRF2標的遺伝子発現低下

外田 修裕 東北大学

2022.03.25

概要

【研究背景】食道扁平上皮癌 (ESCC) の内視鏡的切除後は高率に異時性 ESCC が発生するが,内視鏡的切除後の飲酒習慣が異時性 ESCC 発生に大きく関与する.このため,ESCC 患者では背景食道非腫瘍粘膜において飲酒による特異的な ESCC 発癌機序の存在が想定され,ESCC 発癌に対する防御機構として働く nuclear factor erythroid 2-related factor 2 (NRF2) や粘膜バリア機能が関連している可能性がある.

【研究目的】ESCC 患者の背景食道非腫瘍粘膜におけるアセトアルデヒド (AcH)・エタノール (EtOH) 曝露に対する食道粘膜バリア機能障害と NRF2 標的遺伝子発現の変化を明らかにすることを目的とした.

【研究方法】 ESCC 患者 20 名,年齢・性をマッチした非 ESCC 患者 20 名 (コントロール) を対象とした.対象患者は,採血にて aldehyde dehydrogenase 2 (ALDH2) の遺伝子多型測定と,内視鏡下で非腫瘍食道粘膜を生検し採取した検体を用いて mini-Ussing chamber 装置による AcH と AcH + EtOH 曝露下の経上皮電気抵抗 (transepithelial electrical registance; TEER) 測定を行った.また,粘膜内 CLDN4 と NRF2 標的遺伝子のmRNA とタンパク発現を定量逆転写ポリメラーゼ連鎖反応 (RT-qPCR) と免疫染色で評価した.

【研究結果】AcH または AcH + EtOH 曝露後の TEER は,ESCC・非 ESCC 患者間で有意差を認めなかった.しかし,AcH と AcH + EtOH 曝露後の claudin 4 (CLDN4) とNRF2 標的遺伝子の mRNA 発現は,非 ESCC 患者に比し ESCC 患者にて有意に低下しており (全て p < 0.05),ESCC 患者では AcH + EtOH 曝露後の NRF2 標的遺伝子発現は非曝露に比し有意な低下を認めた (p < 0.01).CLDN4 と NRF2 標的遺伝子発現の AcH・AcH + EtOH 曝露後低下傾向は,ESCC 高リスク遺伝子型である ALDH2 不全型/欠損型の ESCC 患者にてより顕著となった.逆に非 ESCC 患者においては,AcH 曝露後の CLDN4 mRNA 発現は非曝露に比し上昇を認めた.

【結論】ESCC 患者の背景食道非腫瘍粘膜ではアルコールによる ESCC 発癌に対する NRF2 防御機構が低下している可能性があり,これが ESCC 患者における高率な異時性 ESCC 発生に関連している可能性が考えられた.

この論文で使われている画像

参考文献

[1] Arnold M, Ferlay J, van Berge Henegouwen MI, et al. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut. 2020; 69: 1564-71.

[2] 独立行政法人国立がん研究センターがん情報サービス (https://ganjoho.jp/public/cancer/esophagus/patients.html)

[3] Hatta W, Gotoda T, Koike T, et al. Management following endoscopic resection in elderly patients with early-stage upper gastrointestinal neoplasia. Dig Endosc. 2020; 32: 861-73.

[4] Tsujii Y, Nishida T, Nishiyama O, et al. Clinical outcomes of endoscopic submucosal dissection for superficial esophageal neoplasms: a multicenter retrospective cohort study. Endoscopy. 2015; 47: 775-83.

[5] Ogata Y, Hatta W, Koike T, et al. Predictors of early and late mortality after endoscopic resection for esophageal squamous cell carcinoma. Tohoku J Exp Med. 2021; 253: 29-39.

[6] Hatta W, Koike T, Takahashi S, et al. Risk of metastatic recurrence after endoscopic resection for esophageal squamous cell carcinoma invading into the muscularis mucosa or submucosa: a multicenter retrospective study. J Gastroenterol. 2021; 56: 620-32.

[7] Oda I, Shimizu Y, Yoshio T, et al. Long-term outcome of endoscopic resection for intramucosal esophageal squamous cell cancer: a secondary analysis of the japan esophageal cohort study. Endoscopy. 2020; 52: 967-75.

[8] Katada C, Yokoyama T, Yano T, et al. Alcohol consumption and multiple dysplastic lesions increase risk of squamous cell carcinoma in the esophagus, head, and neck. Gastroenterology. 2016; 151: 860-69.e7.

[9] Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma. Lancet. 2013; 381: 400- 12.

[10] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Personal habits and indoor combustions. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum. 31 2012; 100: 1-538.

[11] Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer. 2007; 7: 599-612.

[12] Yokoyama A, Kamada Y, Imazeki H, et al. Effects of ADH1B and ALDH2 genetic polymorphisms on alcohol elimination rates and salivary acetaldehyde levels in intoxicated japanese alcoholic men. Alcohol Clin Exp Res. 2016; 40: 1241-50.

[13] Ohashi S, Miyamoto S, Kikuchi O, et al. Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology. 2015; 149: 1700-15.

[14] Okata H, Hatta W, Iijima K, et al. Detection of acetaldehyde in the esophageal tissue among healthy male subjects after ethanol drinking and subsequent L-cysteine intake. Tohoku J Exp Med. 2018; 244: 317-25.

[15] Samak G, Gangwar R, Meena AS, et al. Calcium channels and oxidative stress mediate a synergistic disruption of tight junctions by ethanol and acetaldehyde in Caco-2 cell monolayers. Sci Rep. 2016; 6: 38899.

[16] Singh AB, Sharma A, Dhawan P. Claudin family of proteins and cancer: an overview. J Oncol. 2010; 2010: 541957.

[17] Ohkoshi A, Suzuki T, Ono M, et al. Roles of Keap1-Nrf2 system in upper aerodigestive tract carcinogenesis. Cancer Prev Res (Phila). 2013; 6: 149-59.

[18] Nabeshima T, Hamada S, Taguchi K, et al. Keap1 deletion accelerates mutant K-ras/p53- driven cholangiocarcinoma. Am J Physiol Gastrointest Liver Physiol. 2020; 318: G419-27.

[19] Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007; 47: 89-116.

[20] Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004; 10: 549-57.

[21] Kawasaki Y, Okumura H, Uchikado Y, et al. Nrf2 is useful for predicting the effect of chemoradiation therapy on esophageal squamous cell carcinoma. Ann Surg Oncol. 2014; 21: 2347-52.

[22] Shibata T, Kokubu A, Saito S, et al. NRF2 mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer. Neoplasia. 2011; 13: 864-73.

[23] Chen H, Hu Y, Fang Y, et al. Nrf2 deficiency impairs the barrier function of mouse oesophageal epithelium. Gut. 2014; 63: 711-9.

[24] Cui R, Kamatani Y, Takahashi A, et al. Functional variants in ADH1B and ALDH2 coupled with alcohol and smoking synergistically enhance esophageal cancer risk. Gastroenterology. 2009; 137: 1768-75.

[25] Tanaka F, Yamamoto K, Suzuki S, et al. Strong interaction between the effects of alcohol consumption and smoking on oesophageal squamous cell carcinoma among individuals with ADH1B and/or ALDH2 risk alleles. Gut. 2010; 59: 1457-64.

[26] Abiko S, Shimizu Y, Miyamoto S, et al. Risk assessment of metachronous squamous cell carcinoma after endoscopic resection for esophageal carcinoma based on the genetic polymorphisms of alcoholdehydrogense-1B aldehyde dehydrogenase-2: temperance reduces the risk. J Gastroenterol. 2018; 53: 1120-30.

[27] Norita K, Asanuma K, Koike T, et al. Impaired mucosal integrity in proximal esophagus is involved in development of proton pump inhibitor-refractory nonerosive reflux disease. Digestion. 2021; 102: 404-14.

[28] Honda J, Iijima K, Asanuma K, et al. Estrogen enhances esophageal barrier function by potentiating occludin expression. Dig Dis Sci. 2016; 61: 1028-38.

[29] Amanuma Y, Ohashi S, Itatani Y, et al. Protective role of ALDH2 against acetaldehyde- derived DNA damage in oesophageal squamous epithelium. Sci Rep. 2015; 5: 14142.

[30] Blasig IE, Haseloff RF. Tight junctions and tissue barriers. Antioxid Redox Signal. 2011; 15: 1163-6.

[31] Overgaard CE, Daugherty BL, Mitchell LA, et al. Claudins: control of barrier function and regulation in response to oxidant stress. Antioxid Redox Signal. 2011; 15: 1179-93.

[32] Jovov B, Van Itallie CM, Shaheen NJ, et al. Claudin-18: a dominant tight junction protein in Barrett's esophagus and likely contributor to its acid resistance. Am J Physiol Gastrointest Liver Physiol. 2007; 293: G1106-13.

[33] Hashibe M, Brennan P, Strange RC, et al. Meta- and pooled analyses of GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes and risk of head and neck cancer. Cancer Epidemiol Biomarkers Prev. 2003; 12: 1509-17.

[34] Odera JO, Xiong Z, Huang C, et al. NRF2/ACSS2 axis mediates the metabolic effect of alcohol drinking on esophageal squamous cell carcinoma. Biochem J. 2020; 477: 3075-89.

[35] Wu KC, Liu J, Klaassen CD. Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation. Toxicol Appl Pharmacol. 2012; 262: 321-9.

[36] Jensen JS, Fan X, Guidot DM. Alcohol causes alveolar epithelial oxidative stress by inhibiting the nuclear factor (erythroid-derived 2)-like 2-antioxidant response element signaling pathway. Am J Respir Cell Mol Biol. 2013; 48: 511-7.

[37] Muto M, Hitomi Y, Ohtsu A, et al. Association of aldehyde dehydrogenase 2 gene polymorphism with multiple oesophageal dysplasia in head and neck cancer patients. Gut. 2000; 47: 256-61.

[38] Zucco F, Batto AF, Bises G, et al. An inter-laboratory study to evaluate the effects of medium composition on the differentiation and barrier function of Caco-2 cell lines. Altern Lab Anim. 2005; 33: 603-18.

[39] Meloni M, Buratti P, Carriero F, et al. In Vitro Modelling of Barrier Impairment Associated with Gastro-Oesophageal Reflux Disease (GERD). Clin Exp Gastroenterol. 2021; 14: 361-73.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る