リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Molecular Mechanism and Regulation of Gross Chromosomal Rearrangements」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Molecular Mechanism and Regulation of Gross Chromosomal Rearrangements

大仲, 惇司 大阪大学 DOI:10.18910/77549

2020.06.19

概要

相同組換えは、DNA二本鎖切断などのDNA損傷を修復する。一方、遺伝病や細胞死の原因となる染色体再編(GCR)を引き起こすこともある。そのため、組換え経路を厳密に制御することが重要である。多くの真核生物のセントロメア領域はリピート配列で構成されている。そのため、リピート配列を介した染色体再編が起こり易い。これまでの研究から、セントロメアでは相同組換え因子Rad51の変異により同腕染色体が高頻度で起こることが分かっている。Rad51はRad52によって組換え部位に呼び込まれ、一本鎖 DNA上に結合しフィラメント構造を形成する。Rad54はRad51フィラメントを安定化し、相同二本鎖DNAへの相同鎖侵入を促進する。このような経路はsynthesis-dependent strand annealing (SDSA)経路と呼ばれ、元の配列を正確に修復することができる。一方で、Rad52は一本鎖DNAを鋳型にアニーリングする single-strand annealing (SSA)による組換えを引き起こすことも知られている。しかしながら、染色体再編の分子メカニズムと組換え制御の関係は明らかではない。

セントロメアで相同組換えがどのように制御されているのかを明らかにするため、染色体再編と染色体再編を伴わないない組換え(gene conversion)におけるRad54の役割を調べた。その結果、Rad51だけでなく、Rad54を欠失させることによっても左右両腕が同じ配列となる同腕染色体形成の頻度が増加した。この結果はRad54のATPase活性の変異でも同様であった。また、Rad54のATPase活性は非交叉型のgene conversionにも必要であった。これらの結果から、Rad54によるSDSA経路を促進することで染色体再編を防ぐと考えられる。

染色体再編がセントロメアで発生するメカニズムを明らかにするために、Rad52が染色体再編に必要かどうかを調べた。rad52∆により染色体再編頻度が増加したが、rad52∆細胞の染色体再編頻度はrad51∆細胞よりも低かった。rad51∆とrad52∆の染色体再編頻度はrad51∆細胞よりも低かったことから、Rad52を介したSSAがRad51に非依存的に染色体再編を引き起こすと考えられる。このような染色体再編は、Rad52タンパク質のin vitroでのSSA活性を失ったrad52-R45K変異により減少した。また、ミスマッチ修復因子としても知られるMsh2-Msh3は、Rad52を介した染色体再編に働いていることが明らかとなった。染色体再編は相同配列を入れ替える交叉型組換えによって引き起こされる可能性が考えられる。Rad52を介した染色体再編が交叉型組換えによって引き起こされるかを明らかにするために、交叉を促進するエンドヌクレアーゼであるMus81の変異体を用いて染色体再編頻度を測定した。その結果、rad52-R45Kとmus81∆によりrad51∆のバックグラウンドで染色体再編が大幅に減少した。これらの結果から、染色体再編はSSAによる相同
鎖探索のあと、交叉型組換えによって引き起こされると考えられる。

染色体セントロメア領域においてはRad51依存的組換えのみが引き起こされる。このような組換え経路選択に関わる因子を明らかにするため、Rad52によるSSAを増加させる変異をスクリーニングした。その結果DNAポリメラーゼα(Polα)の変異を単離することができた。興味深いことに、DNA複製時に複製フォークの進行に抑制的に働くSwi1/Tof1/Timelessの変異により、セントロメアでRad52依存的SSAが引き起こされた。これらの結果から、DNA複製因子が一本鎖DNAを抑制してRad52を介したSSAを抑制していると考えられる。よって、セントロメアでのRad52を介したSSAを防ぐことが、染色体再編を防ぐことになると考えられる。これらの研究成果は、染色体異常によって引き起こされる遺伝病の原因や予防法の解明につながると考えられる。また、染色体再編を引き起こす因子が種を通じて保存されていることは、生物の進化の原動力となってるとも考えられる。

参考文献

Agarwal, S., van Cappellen, W.A., Guenole, A., Eppink, B., Linsen, S.E., Meijering, E., Houtsmuller, A., Kanaar, R., and Essers, J. (2011). ATP-dependent and independent functions of Rad54 in genome maintenance. J Cell Biol 192, 735-750.

Alexeev, A., Mazin, A., and Kowalczykowski, S.C. (2003). Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat Struct Biol 10, 182-186.

Alexiadis, V., and Kadonaga, J.T. (2002). Strand pairing by Rad54 and Rad51 is enhanced by chromatin. Genes Dev 16, 2767-2771.

Allshire, R.C., and Ekwall, K. (2015). Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 7, a018770.

Allshire, R.C., Javerzat, J.P., Redhead, N.J., and Cranston, G. (1994). Position effect variegation at fission yeast centromeres. Cell 76, 157-169.

Aze, A., Sannino, V., Soffientini, P., Bachi, A., and Costanzo, V. (2016). Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression. Nat Cell Biol 18, 684-691.

Bai, Y., Davis, A.P., and Symington, L.S. (1999). A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Genetics 153, 1117-1130.

Bai, Y., and Symington, L.S. (1996). A Rad52 homolog is required for RAD51- independent mitotic recombination in Saccharomyces cerevisiae. Genes & Development 10, 2025-2037.

Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120-124.

Bi, B., Rybalchenko, N., Golub, E.I., and Radding, C.M. (2004). Human and yeast Rad52 proteins promote DNA strand exchange. Proc Natl Acad Sci U S A 101, 9568-9572.

Boddy, M.N., Gaillard, P.H.L., McDonald, W.H., Shanahan, P., Yates, J.R., 3rd, and Russell, P. (2001). Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107, 537-548.

Bugreev, D.V., Hanaoka, F., and Mazin, A.V. (2007). Rad54 dissociates homologous recombination intermediates by branch migration. Nat Struct Mol Biol 14, 746-753.

Burgers, P.M.J., and Kunkel, T.A. (2017). Eukaryotic DNA replication fork. Annu Rev Biochem 86, 417-438.

Cam, H.P., Sugiyama, T., Chen, E.S., Chen, X., FitzGerald, P.C., and Grewal, S.I. (2005).

Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 37, 809-819.

Carvalho, C.M., and Lupski, J.R. (2016). Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 17, 224-238.

Codlin, S., and Dalgaard, J.Z. (2003). Complex mechanism of site-specific DNA replication termination in fission yeast. EMBO J 22, 3431-3440.

Cortes-Ledesma, F., Malagon, F., and Aguilera, A. (2004). A novel yeast mutation, rad52- L89F, causes a specific defect in Rad51-independent recombination that correlates with a reduced ability of Rad52-L89F to interact with Rad59. Genetics 168, 553-557.

Dalgaard, J.Z., and Klar, A.J. (2000). swi1 and swi3 perform imprinting, pausing, and termination of DNA replication in S. pombe. Cell 102, 745-751.

Davis, A.P., and Symington, L.S. (2001). The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics 159, 515-525.

de Koning, A.P., Gu, W., Castoe, T.A., Batzer, M.A., and Pollock, D.D. (2011). Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7, e1002384.

DeLuca, J.G., and Musacchio, A. (2012). Structural organization of the kinetochore- microtubule interface. Curr Opin Cell Biol 24, 48-56.

Dendouga, N., Gao, H., Moechars, D., Janicot, M., Vialard, J., and McGowan, C.H. (2005). Disruption of murine Mus81 increases genomic instability and DNA damage sensitivity but does not promote tumorigenesis. Mol Cell Biol 25, 7569-7579.

Doe, C.L., Osman, F., Dixon, J., and Whitby, M.C. (2004). DNA repair by a Rad22- Mus81-dependent pathway that is independent of Rhp51. Nucleic Acids Res 32, 5570- 5581.

Duderstadt, K.E., Geertsema, H.J., Stratmann, S.A., Punter, C.M., Kulczyk, A.W., Richardson, C.C., and van Oijen, A.M. (2016). Simultaneous Real-Time Imaging of Leading and Lagging Strand Synthesis Reveals the Coordination Dynamics of Single Replisomes. Mol Cell 64, 1035-1047.

Eichmiller, R., Medina-Rivera, M., DeSanto, R., Minca, E., Kim, C., Holland, C., Seol, J.H., Schmit, M., Oramus, D., Smith, J., et al. (2018). Coordination of Rad1-Rad10 interactions with Msh2-Msh3, Saw1 and RPA is essential for functional 3' non- homologous tail removal. Nucleic Acids Res 46, 5075-5096.

Errico, A., Costanzo, V., and Hunt, T. (2007). Tipin is required for stalled replication forks to resume DNA replication after removal of aphidicolin in Xenopus egg extracts. Proc Natl Acad Sci U S A 104, 14929-14934.

Fawcett, J.A., Iida, T., Takuno, S., Sugino, R.P., Kado, T., Kugou, K., Mura, S., Kobayashi, T., Ohta, K., Nakayama, J., et al. (2014). Population genomics of the fission yeast Schizosaccharomyces pombe. PLoS One 9, e104241.

Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M., et al. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496-512.

Greenfeder, S.A., and Newlon, C.S. (1992). Replication forks pause at yeast centromeres. Mol Cell Biol 12, 4056-4066.

Grewal, S.I., and Jia, S. (2007). Heterochromatin revisited. Nat Rev Genet 8, 35-46.

Hamerton, J.L., Canning, N., Ray, M., and Smith, S. (1975). A cytogenetic survey of 14,069 newborn infants. I. Incidence of chromosome abnormalities. Clin Genet 8, 223- 243.

Handa, T., Kanke, M., Takahashi, T.S., Nakagawa, T., and Masukata, H. (2012). DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast. Mol Biol Cell 23, 3240-3253.

Henikoff, S., Ahmad, K., and Malik, H.S. (2001). The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098-1102.

Hernandez, D., and Fisher, E.M. (1996). Down syndrome genetics: unravelling a multifactorial disorder. Hum Mol Genet 5 Spec No, 1411-1416.

Hodgson, B., Calzada, A., and Labib, K. (2007). Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase. Mol Biol Cell 18, 3894-3902.

Huijsdens-van Amsterdam, K., Page-Christiaens, L., Flowers, N., Bonifacio, M.D., Ellis, K.M.B., Vogel, I., Vestergaard, E.M., Miguelez, J., de Carvalho, M.H.B., Sistermans, E.A., et al. (2018). Isochromosome 21q is overrepresented among false-negative cell-free DNA prenatal screening results involving Down syndrome. Eur J Hum Genet 26, 1490- 1496.

Hunter, N. (2015). Meiotic Recombination: The Essence of Heredity. Cold Spring Harb Perspect Biol 7.

Iida, N., Yamao, F., Nakamura, Y., and Iida, T. (2014). Mudi, a web tool for identifying mutations by bioinformatics analysis of whole-genome sequence. Genes Cells 19, 517- 527.

Ivanov, E.L., Sugawara, N., Fishman-Lobell, J., and Haber, J.E. (1996). Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142, 693-704.

Jensen, R.B., Carreira, A., and Kowalczykowski, S.C. (2010). Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467, 678-683.

Jones, E.W., and Fink, G.R. (1982). Regulation of amino acid and nucleotide biosynthesis in yeast. The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, 181–299.

Kagawa, W., Kurumizaka, H., Ikawa, S., Yokoyama, S., and Shibata, T. (2001). Homologous pairing promoted by the human Rad52 protein. J Biol Chem 276, 35201- 35208.

Kagawa, W., Kurumizaka, H., Ishitani, R., Fukai, S., Nureki, O., Shibata, T., and Yokoyama, S. (2002). Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form. Mol Cell 10, 359-371.

Keskin, H., Shen, Y., Huang, F., Patel, M., Yang, T., Ashley, K., Mazin, A.V., and Storici, F. (2014). Transcript-RNA-templated DNA recombination and repair. Nature 515, 436- 439.

Kingwell, B., and Rattner, J.B. (1987). Mammalian kinetochore/centromere composition: a 50 kDa antigen is present in the mammalian kinetochore/centromere. Chromosoma 95, 403-407.

Koulintchenko, M., Vengrova, S., Eydmann, T., Arumugam, P., and Dalgaard, J.Z. (2012). DNA polymerase alpha (swi7) and the flap endonuclease Fen1 (rad2) act together in the S-phase alkylation damage response in S. pombe. PLoS One 7, e47091.

Kramara, J., Osia, B., and Malkova, A. (2018). Break-Induced Replication: The Where, The Why, and The How. Trends Genet 34, 518-531.

Kurabayashi, N., and Sanada, K. (2013). Increased dosage of DYRK1A and DSCR1 delays neuronal differentiation in neocortical progenitor cells. Genes Dev 27, 2708-2721.

Kwon, Y., Chi, P., Roh, D.H., Klein, H., and Sung, P. (2007). Synergistic action of the Saccharomyces cerevisiae homologous recombination factors Rad54 and Rad51 in chromatin remodeling. DNA Repair (Amst) 6, 1496-1506.

Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921.

Lea, D.E., and Coulson, C.A. (1949). The distribution of the numbers of mutants in bacterial populations. Journ of Genetics 49.

Li, F., Martienssen, R., and Cande, W.Z. (2011). Coordination of DNA replication and histone modification by the Rik1-Dos2 complex. Nature 475, 244-248.

Li, H., Ruan, J., and Durbin, R. (2008). Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18, 1851-1858.

Lin, M., Chang, C.J., and Green, N.S. (1996). A new method for estimating high mutation rates in cultured cells. Mutat Res 351, 105-116.

Lisby, M., Barlow, J.H., Burgess, R.C., and Rothstein, R. (2004). Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699-713.

Maki, K., Inoue, T., Onaka, A., Hashizume, H., Somete, N., Kobayashi, Y., Murakami, S., Shigaki, C., Takahashi, T.S., Masukata, H., et al. (2011). Abundance of prereplicative

complexes (Pre-RCs) facilitates recombinational repair under replication stress in fission yeast. J Biol Chem 286, 41701-41710.

Manosas, M., Spiering, M.M., Zhuang, Z., Benkovic, S.J., and Croquette, V. (2009). Coupling DNA unwinding activity with primer synthesis in the bacteriophage T4 primosome. Nat Chem Biol 5, 904-912.

Marsischky, G.T., Filosi, N., Kane, M.F., and Kolodner, R. (1996). Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev 10, 407-420.

Mazin, A.V., Alexeev, A.A., and Kowalczykowski, S.C. (2003). A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J Biol Chem 278, 14029- 14036.

McCulloch, S.D., and Kunkel, T.A. (2008). The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18, 148-161.

McFarlane, R.J., and Humphrey, T.C. (2010). A role for recombination in centromere function. Trends Genet 26, 209-213.

Mikkelsen, T.S., Hillier, L.W., Eichler, E.E., Zody, M.C., Jaffe, D.B., Yang, S.-P., Enard, W., Hellman, I., Linblad-Toh, K., Altheide, T.K., et al. (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69-87.

Mitra, S., Gomez-Raja, J., Larriba, G., Dubey, D.D., and Sanyal, K. (2014). Rad51-Rad52 mediated maintenance of centromeric chromatin in Candida albicans. PLoS Genet 10, e1004344.

Mortensen, U.H., Bendixen, C., Sunjevaric, I., and Rothstein, R. (1996). DNA strand annealing is promoted by the yeast Rad52 protein. Proc Natl Acad Sci U S A 93, 10729- 10734.

Mukerjee, D., and Burdette, W.J. (1966). A familial minute isochromosome. Am J Hum Genet 18, 62-69.

Murfuni, I., Basile, G., Subramanyam, S., Malacaria, E., Bignami, M., Spies, M., Franchitto, A., and Pichierri, P. (2013). Survival of the replication checkpoint deficient cells requires MUS81-RAD52 function. PLoS Genet 9, e1003910.

Nakamura, K., Okamoto, A., Katou, Y., Yadani, C., Shitanda, T., Kaweeteerawat, C., Takahashi, T.S., Itoh, T., Shirahige, K., Masukata, H., et al. (2008). Rad51 suppresses gross chromosomal rearrangement at centromere in Schizosaccharomyces pombe. The EMBO journal 27, 3036-3046.

Nakayama, J., Allshire, R.C., Klar, A.J., and Grewal, S. (2001a). A role for DNA polymerase α in epigenetic control of transcriptional silencing in fission yeast. The EMBO journal 20, 2857-2866.

Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D., and Grewal, S.I. (2001b). Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110-113.

Niwa, O., Matsumoto, T., and Yanagida, M. (1986). Construction of a mini-chromosome by deletion and its mitotic and meiotic behaviour in fission yeast. Mol Gen Genet 203, 397-405.

Ogawa, T., Shinohara, A., Nabetani, A., Ikeya, T., Yu, X., Egelman, E.H., and Ogawa, H. (1993). RecA-like recombination proteins in eukaryotes: functions and structures of RAD51 genes. Cold Spring Harb Symp Quant Biol 58, 567-576.

Okita, A.K., Zafar, F., Su, J., Weerasekara, D., Kajitani, T., Takahashi, T.S., Kimura, H., Murakami, Y., Masukata, H., and Nakagawa, T. (2019). Heterochromatin suppresses gross chromosomal rearrangements at centromeres by repressing Tfs1/TFIIS- dependent transcription. Commun Biol 2, 17.

Onaka, A.T., Toyofuku, N., Inoue, T., Okita, A.K., Sagawa, M., Su, J., Shitanda, T., Matsuyama, R., Zafar, F., Takahashi, T.S., et al. (2016). Rad51 and Rad54 promote noncrossover recombination between centromere repeats on the same chromatid to prevent isochromosome formation. Nucleic Acids Res 44, 10744-10757.

Petukhova, G., Stratton, S., and Sung, P. (1998). Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393, 91-94.

Petukhova, G., Van Komen, S., Vergano, S., Klein, H., and Sung, P. (1999). Yeast Rad54 promotes Rad51-dependent homologous DNA pairing via ATP hydrolysis-driven change in DNA double helix conformation. J Biol Chem 274, 29453-29462.

Phung, H.T.T., Nguyen, H.L.H., Vo, S.T., Nguyen, D.H., and Le, M.V. (2018). Saccharomyces cerevisiae Mus81-Mms4 and Rad52 can cooperate in the resolution of recombination intermediates. Yeast 35, 543-553.

Pidoux, A.L., Richardson, W., and Allshire, R.C. (2003). Sim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation. J Cell Biol 161, 295-307.

Plohl, M., Mestrovic, N., and Mravinac, B. (2014). Centromere identity from the DNA point of view. Chromosoma 123, 313-325.

Pluta, A.F., Mackay, A.M., Ainsztein, A.M., Goldberg, I.G., and Earnshaw, W.C. (1995). The centromere: hub of chromosomal activities. Science 270, 1591-1594.

Pryce, D.W., Ramayah, S., Jaendling, A., and McFarlane, R.J. (2009). Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1. Proc Natl Acad Sci U S A 106, 4770-4775.

Putnam, C.D., Hayes, T.K., and Kolodner, R.D. (2009). Specific pathways prevent duplication-mediated genome rearrangements. Nature 460, 984-989.

Putnam, C.D., and Kolodner, R.D. (2017). Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 206, 1187-1225.

Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D., et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593-599.

Reddy, G., Golub, E.I., and Radding, C.M. (1997). Human Rad52 protein promotes single-strand DNA annealing followed by branch migration. Mutat Res 377, 53-59.

Ruiz-Herrera, A., Smirnova, A., Khoriauli, L., Nergadze, S.G., Mondello, C., and Giulotto, E. (2011). Gene amplification in human cells knocked down for RAD54. Genome Integr 2, 5.

Saito, Y., Takeda, J., Okada, M., Kobayashi, J., Kato, A., Hirota, K., Taoka, M., Matsumoto, T., Komatsu, K., and Isobe, T. (2013). The proteasome factor Bag101 binds to Rad22 and suppresses homologous recombination. Scientific reports 3, 2022.

Saitoh, H., Tomkiel, J., Cooke, C.A., Ratrie, H., 3rd, Maurer, M., Rothfield, N.F., and Earnshaw, W.C. (1992). CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70, 115-125.

Sasaki, M., Lange, J., and Keeney, S. (2010). Genome destabilization by homologous recombination in the germ line. Nat Rev Mol Cell Biol 11, 182-195.

Sato, H., Masuda, F., Takayama, Y., Takahashi, K., and Saitoh, S. (2012). Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. Curr Biol 22, 658-667.

Selmecki, A., Forche, A., and Berman, J. (2006). Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313, 367-370.

Shi, I., Hallwyl, S.C., Seong, C., Mortensen, U., Rothstein, R., and Sung, P. (2009). Role of the Rad52 amino-terminal DNA binding activity in DNA strand capture in homologous recombination. J Biol Chem 284, 33275-33284.

Shinohara, A., Shinohara, M., Ohta, T., Matsuda, S., and Ogawa, T. (1998). Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3, 145-156.

Smith, K.D., Fu, M.A., and Brown, E.J. (2009). Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis. J Cell Biol 187, 15-23.

Snaith, H.A., and Forsburg, S.L. (1999). Rereplication phenomenon in fission yeast requires MCM proteins and other S phase genes. Genetics 152, 839-851.

Stimpson, K.M., Song, I.Y., Jauch, A., Holtgreve-Grez, H., Hayden, K.E., Bridger, J.M., and Sullivan, B.A. (2010). Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet 6.

Sugawara, N., Ivanov, E.L., Fishman-Lobell, J., Ray, B.L., Wu, X., and Haber, J.E. (1995).

DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature 373, 3.

Sugawara, N., Paques, F., Colaiacovo, M., and Haber, J.E. (1997). Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break- induced recombination. Proc Natl Acad Sci U S A 94, 9214-9219.

Sugino, A., Ohara, T., Sebastian, J., Nakashima, N., and Araki, H. (1998). DNA polymerase epsilon encoded by cdc20+ is required for chromosomal DNA replication in the fission yeast Schizosaccharomyces pombe. Genes Cells 3, 99-110.

Sung, P., Higgins, D., Prakash, L., and Prakash, S. (1988). Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. The EMBO journal 7, 3263-3269.

Symington, L.S. (2002). Role of RAD52 Epistasis Group Genes in Homologous Recombination and Double-Strand Break Repair. Microbiology and Molecular Biology Reviews 66, 630-670.

Tan, T.L., Essers, J., Citterio, E., Swagemakers, S.M., de Wit, J., Benson, F.E., Hoeijmakers, J.H., and Kanaar, R. (1999). Mouse Rad54 affects DNA conformation and DNA-damage-induced Rad51 foci formation. Curr Biol 9, 325-328.

Tavtigian, S.V., Simard, J., Rommens, J., Couch, F., Shattuck-Eidens, D., Neuhausen, S., Merajver, S., Thorlacius, S., Offit, K., Stoppa-Lyonnet, D., et al. (1996). The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet 12, 333- 337.

Thoma, N.H., Czyzewski, B.K., Alexeev, A.A., Mazin, A.V., Kowalczykowski, S.C., and Pavletich, N.P. (2005). Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nat Struct Mol Biol 12, 350-356.

Tinline-Purvis, H., Savory, A.P., Cullen, J.K., Dave, A., Moss, J., Bridge, W.L., Marguerat, S., Bahler, J., Ragoussis, J., Mott, R., et al. (2009). Failed gene conversion leads to extensive end processing and chromosomal rearrangements in fission yeast. The EMBO journal 28, 3400-3412.

Tutt, A., Bertwistle, D., Valentine, J., Gabriel, A., Swift, S., Ross, G., Griffin, C., Thacker, J., and Ashworth, A. (2001). Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. The EMBO journal 20, 4704-4716.

Tutt, A.N., van Oostrom, C.T., Ross, G.M., van Steeg, H., and Ashworth, A. (2002). Disruption of Brca2 increases the spontaneous mutation rate in vivo: synergism with ionizing radiation. EMBO Rep 3, 255-260.

Uematsu, A., Yorifuji, T., Muroi, J., Kawai, M., Mamada, M., Kaji, M., Yamanaka, C., Momoi, T., and Nakahata, T. (2002). Parental origin of normal X chromosomes in Turner syndrome patients with various karyotypes: implications for the mechanism leading to generation of a 45,X karyotype. Am J Med Genet 111, 134-139.

Van Hooser, A.A., Ouspenski, II, Gregson, H.C., Starr, D.A., Yen, T.J., Goldberg, M.L., Yokomori, K., Earnshaw, W.C., Sullivan, K.F., and Brinkley, B.R. (2001). Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. Journal of cell science 114, 3529-3542.

van Veelen, L.R., Essers, J., van de Rakt, M.W., Odijk, H., Pastink, A., Zdzienicka, M.Z., Paulusma, C.C., and Kanaar, R. (2005). Ionizing radiation-induced foci formation of mammalian Rad51 and Rad54 depends on the Rad51 paralogs, but not on Rad52. Mutat Res 574, 34-49.

Villarreal, D.D., Lee, K., Deem, A., Shim, E.Y., Malkova, A., and Lee, S.E. (2012). Microhomology directs diverse DNA break repair pathways and chromosomal translocations. PLoS Genet 8, e1003026.

Wood, V., Gwilliam, R., Rajandream, M.A., Lyne, M., Lyne, R., Stewart, A., Sgouros, J., Peat, N., Hayles, J., Baker, S., et al. (2002). The genome sequence of Schizosaccharomyces pombe. Nature 415, 871-880.

Wooster, R., Bignell, G., Lancaster, J., Swift, S., Seal, S., Mangion, J., Collins, N., Gregory, S., Gumbs, C., and Micklem, G. (1995). Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789-792.

Wu, Y., Kantake, N., Sugiyama, T., and Kowalczykowski, S.C. (2008). Rad51 protein controls Rad52-mediated DNA annealing. J Biol Chem 283, 14883-14892.

Yan, Z., Xue, C., Kumar, S., Crickard, J.B., Yu, Y., Wang, W., Pham, N., Li, Y., Niu, H., Sung, P., et al. (2019). Rad52 Restrains Resection at DNA Double-Strand Break Ends in Yeast. Mol Cell 76, 699-711 e696.

Yuan, S.S., Lee, S.Y., Chen, G., Song, M., Tomlinson, G.E., and Lee, E.Y. (1999). BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res 59, 3547-3551.

Zafar, F., Okita, A.K., Onaka, A.T., Su, J., Katahira, Y., Nakayama, J.I., Takahashi, T.S., Masukata, H., and Nakagawa, T. (2017). Regulation of mitotic recombination between DNA repeats in centromeres. Nucleic Acids Res 45, 11222-11235.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る