リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Multi‐Wavelength Imaging Observations of STEVE at Athabasca, Canada」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Multi‐Wavelength Imaging Observations of STEVE at Athabasca, Canada

Yadav, Sneha Shiokawa, Kazuo Otsuka, Yuichi Connors, Martin St Maurice, J.‐P. 名古屋大学

2021.02

概要

We present the first multi-wavelength imaging observations of strong thermal emission velocity enhancement (STEVE) using an all-sky imager at Athabasca (magnetic latitude = 61.5°N), Canada. This study is based on three STEVE events which were accompanied by picket fence structures in the green-line. Although the STEVE arc was dominant in 630 and 557.7-nm, weak emissions were also found in other wavelengths including OI at 844.6, Hβ, Na, and the nominal background filter at 572.5-nm. As observed at 630 and 557.7-nm, the STEVE arc started as a faint arc close to the auroral oval and moved equatorward. The 557.7-nm arc exhibited picket fence structure at later times after it moved equatorward. The picket fence was sometimes found to persist even after the 630-nm arc had disappeared. During a particular event, the STEVE arcs in both the 630 and 557.7-nm were found to carry a ribbon-like motion moving along the arc. We have found that STEVE arcs are embedded in a region of weak diffuse auroral emissions. The STEVE arcs have sharp boundaries and these boundaries are different in red- and green-line. The sharp decrease in the intensity at the immediate poleward edge of the STEVE arc appears as a “dark-band” in the green-line images. Based on the horizontal component of the geomagnetic field at Fort Smith (magnetic latitude 67.28°N), we find that the STEVE arc detachment, its equatorward motion, and its brightness coincided with changes in the magnetic activity during the recovery phase of a substorm.

この論文で使われている画像

関連論文

参考文献

Archer, W. E., Gallardo-Lacourt, B., Perry, G. W., St-Maurice, J.-P., Buchert, S. C., & Donovan, E. F. (2019). Steve: The optical signature of intense subauroral ion drifts. Geophysical Research Letters, 46, 6279–6286. https://doi.org/10.1029/2019GL082687

Archer, W. E., St-Maurice, J.-P., Gallardo-Lacourt, B., Perry, G. W., Cully, C. M., Donovan, E., et al. (2019). The vertical distribution of the optical emissions of a Steve and Picket Fence event. Geophysical Research Letters, 46, 10719–10725. https://doi.org/10.1029/2019GL084473

Chu, X., Malaspina, D., Gallardo-Lacourt, B., Liang, J., Andersson, L., Ma, Q., et al. (2019). Identifying STEVE's magnetospheric driver using conjugate observations in the magnetosphere and on the ground. Geophysical Research Letters, 46, 12665–12674. https://doi.org/10.1029/2019GL082789

Doe, R. A., Mendillo, M., Vickrey, J., Zanetti, L., & Eastes, R. (1993). Observations of nightside auroral cavities. Journal of Geophysical Research, 98, 293–310.

Foster, J. C., Erickson, P. J., Lind, F. D., & Rideout, W. (2004). Millstone Hill coherent-scatter radar observations of electric field variability in the sub-auroral polarization stream. Geophysical Research Letters, 31, L21803. https://doi.org/10.1029/2004GL021271

Gallardo-Lacourt, B., Liang, J., Nishimura, Y., & Donovan, E. (2018). On the origin of STEVE: Particle precipitation or ionospheric skyglow?. Geophysical Research Letters, 45, 7968–7973. https://doi.org/10.1029/2018GL078509

Gallardo-Lacourt, B., Nishimura, Y., Donovan, E., Gillies, D. M., Perry, G. W., Archer, W. E., et al. (2018). A statistical analysis of STEVE. Journal of Geophysical Research: Space Physics, 123, 9893–9905. https://doi.org/10.1029/2018JA025368

Gillies, D. M., Donovan, E., Hampton, D., Liang, J., Connors, M., Nishimura, Y., et al. (2019). First observations from the TREx Spectrograph: The optical spectrum of STEVE and the Picket Fence phenomena. Geophysical Research Letters, 46, 7207–7213. https://doi. org/10.1029/2019GL083272

Hunten, D. M. (1955). Some photometric observations of auroral spectra. Journal of Atmospheric and Terrestrial Physics, 7, 141–151. https://doi.org/10.1016/0021-9169(55)90121-5

Kozyra, J. U., Shelley, E. G., Comfort, R. H., Brace, L. H., Cravens, T. E., & Nagy, A. F. (1987). The role of ring current O+ in the formation of stable auroral red arcs. Journal of Geophysical Research, 92(A7), 7487–7502. https://doi.org/10.1029/JA092iA07p07487

Liang, J., Donovan, E., Connors, M., Gillies, D., St-Maurice, J. P., Jackel, B., et al. (2019). Optical spectra and emission altitudes of double-layer STEVE: A case study. Geophysical Research Letters, 46, 13630–13639. https://doi.org/10.1029/2019GL085639

MacDonald, E. A., Donovan, E., Nishimura, Y., Case, N. A., Gillies, D. M., Gallardo-lacourt, B., et al. (2018). New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere. Science Advances, 4, 16–21. https://doi.org/10.1126/ sciadv.aaq0030

Mann, I. R., et al. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141, 413–451. https:// doi.org/10.1007/s11214-008-9457-6

Marklund, G. T., et al. (2001). Temporal evolution of the electric field accelerating electrons way from the auroral ionosphere. Nature, 414, 724. https://doi.org/10.1038/414724a

Marklund, G. T., Blomberg, L. G., Fälthammar, C.-G., & Lindqvist, P.-A. (1994). On intense shock-like electric fields associated with black aurora. Geophysical Research Letters, 21, 1859–1862.

Marklund, G., Karlsson, T., & Clemmons, J. (1997). On low-altitude particle acceleration and intense electric fields and their relationship to black aurora. Journal of Geophysical Research, 102, 17509–17522.

Mende, S. B., Harding, B. J., & Turner, C. (2019). Subauroral green STEVE arcs: Evidence for low-energy excitation. Geophysical Research Letters, 46, 14256–14262. https://doi.org/10.1029/2019GL086145

Mishin, E. V., & Burke, W. J. (2005). Stormtime coupling of the ring current, plasmasphere, and topside ionosphere: Electromagnetic and plasma disturbances. Journal of Geophysical Research, 110, A07209. https://doi.org/10.1029/2005JA011021

Mishin, E. V., Burke, W. J., Huang, C. Y., & Rich, F. J. (2003). Electromagnetic wave structures within subauroral polarization streams. Journal of Geophysical Research, 108(A8), 1309. https://doi.org/10.1029/2002JA009793

Nishimura, Y., Gallardo-Lacourt, B., Zou, Y., Mishin, E. V., & Knudsen, D. J. (2019). Magnetospheric signatures of STEVE: Implication for the magnetospheric energy source and inter-hemispheric conjugacy. Geophysical Research Letters, 46, 5637–5644. https://doi. org/10.1029/2019GL082460

Ogawa, Y., Kadokura, A., & Ejiri, M. K. (2020). Optical calibration system of NIPR for aurora and airglow observations. Polar Science, 26, 100570. https://doi.org/10.1016/j.polar.2020.100570

Petrie, W., & Small, R. (1952). Auroral spectrum in the wavelength range 3300–8900Å. The Astrophysical Journal, 116, 433–441.

Shiokawa, K., Katoh, Y., Satoh, M., Ejiri, M. K., Ogawa, T., Nakamura, T., et al. (1999). Development of optical mesosphere thermosphere imagers (OMTI). Earth Planets and Space, 51, 887–896.

Shiokawa, K., Otsuka, Y., & Ogawa, T. (2009). Propagation characteristics of nighttime mesospheric and thermospheric waves observed by optical mesosphere thermosphere imagers at middle and low latitudes. Earth Planets and Space, 61, 479–491.

Takagi, Y., Shiokawa, K., Otsuka, Y., Connors, M., & Schofield, I. (2018). Statistical analysis of SAR arc detachment from the main oval based on 11-year, all-sky imaging observation at Athabasca, Canada. Geophysical Research Letters, 45, 11539–11546. https://doi. org/10.1029/2018GL079615

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る