リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「コウモリゲノムに内在するボルナウイルス様配列miEBLN-1の分子進化学的解析および機能探索」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

コウモリゲノムに内在するボルナウイルス様配列miEBLN-1の分子進化学的解析および機能探索

向井, 八尋 京都大学 DOI:10.14989/doctor.k24051

2022.03.23

概要

内在性ボルナウイルス様配列( Endogenous bornavirus-like elements: EBLs)は、多様な脊椎動物のゲノムに存在しているボルナウイルス由来の内在性配列であり、その中にはタンパク質をコードするオープンリーディングフレームを有すものある。これまでの研究から、いくつかの EBLs では機能的なタンパク質を発現していること が報告されている。一方で、EBLs 由来産物が示す性状や機能が、由来となったボルナウイルス遺伝子とどのように関連しているのかについては明らかになっていない。そこで本論文では、ボルナウイルスのヌクレオプロテイン( N)由来の EBLs であるボルナウイルス 様 N 配列( EBLNs)に着目し、EBLs の遺伝子としての機能性の起源について解析を行った。

ボルナウイルスの N タンパク質はウイルスゲノム RNA に結合してウイルス複製複合体を形成する RNA 結合タンパク質である。初めに本研究では、配列情報から RNA結合タンパク質を予測するツールを用いて、 RNA 結合タンパク質として機能していると考えられる EBLNs を脊椎動物のゲノムデータベースから推定を行った。その結果、多くの EBLNs が RNA 結合タンパク質をコードしている可能性が示された。なかでも、ユビナガコウモリ(Miniopterus natalensis)のゲノムに存在する EBLN( miEBLN-1)は、負の自然選択圧のもとで進化しているタンパク質 ( miEBLN-1p)をコードしていることが示された。また、 miEBLN-1p がユビナガコウモリの様々な臓器で発現していることが明らかとなり、miEBLN-1p が RNA 結合タンパク質として宿主に適応してきた可能性が示された。

そこで、組換え miEBLN-1p タンパク質を作製して、生化学的解析により性状と機能の推定を行った。その結果、miEBLN-1pは宿主細胞においてボルナ病ウイルス(BoDV1)のNタンパク質と類似したRNA結合能を示すことが明らかとなった。一方、miEBLN-1p は BoDV-1 の複製を阻害できないことも示された。さらに申請者は、miEBLN-1p と相互作用する宿主タンパク質の同定を行った。その結果、 miEBLN-1p が宿主の RNA 結合タンパク質である MOV10、 IGF2BP3 と相互作用することが確かめられ、これらの宿主由来のタンパク質と同様にストレス顆粒への局在やレトロトランスポゾンである LINE-1 の転移活性の抑制を示すことが確かめられた。

今回の解析により、ユビナガコウモリゲノムが進化過程で獲得した miEBLN-1は、その由来となったボルナウイルスの Nタンパク質と同様の RNA結合能を保持していることが明らかとなった。 RNAウイルスに由来する内在性配列の宿主細胞への外適応に関しては、いまだその進化的機構は明らかになっていない。本論文での結果は、内在性配列の由来となったウイルス遺伝子の機能が、外適応の方向性に影響していることを示しており、獲得遺伝子の進化適応機構に関する新たな知見を示した。

この論文で使われている画像

参考文献

1. Horie, M. & Tomonaga, K. Non-retroviral fossils in vertebrate genomes. Viruses 3, 1836–1848 (2011).

2. Jern, P. & Coffin, J. M. Effects of retroviruses on host genome function. Annu Rev Genet 42, 709–732 (2008).

3. Weiss, R. A. The discovery of endogenous retroviruses. Retrovirology 3, 67 (2006).

4. Griffiths, D. J. Endogenous retroviruses in the human genome sequence. Genome Biol 2, REVIEWS1017 (2001).

5. Inaguma, Y., Yoshida, T. & Ikeda, H. Scheme for the generation of a truncated endogenous murine leukaemia virus, the Fv-4 resistance gene. J Gen Virol 73, 1925–1930 (1992).

6. Takeda, A. & Matano, T. Inhibition of infectious murine leukemia virus production by Fv-4 env gene products exerting dominant negative effect on viral envelope glycoprotein. Microbes and infection 9, 1590–6 (2007).

7. Dupressoir, A. et al. Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proceedings of the National Academy of Sciences of the United States of America 102, 725–30 (2005).

8. Mi, S. et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785–789 (2000).

9. Matsui, T. et al. SASPase regulates stratum corneum hydration through profilaggrin-to-filaggrin processing. EMBO molecular medicine 3, 320–33 (2011).

10. Bernard, D. et al. Identification and characterization of a novel retroviral-like aspartic protease specifically expressed in human epidermis. The Journal of investigative dermatology 125, 278–87 (2005).

11. Tomonaga, K., Kobayashi, T. & Ikuta, K. Molecular and cellular biology of Borna disease virus infection. Microbes Infect 4, 491–500 (2002).

12. Belyi, V. A., Levine, A. J. & Skalka, A. M. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog 6, e1001030 (2010).

13. Horie, M. et al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463, 84–87 (2010).

14. Katzourakis, A. & Gifford, R. J. Endogenous viral elements in animal genomes. PLoS Genet 6, e1001191 (2010).

15. Shi, M. et al. The evolutionary history of vertebrate RNA viruses. Nature 556, 197–202 (2018).

16. Kawasaki, J., Kojima, S., Mukai, Y., Tomonaga, K. & Horie, M. 100-My history of bornavirus infections hidden in vertebrate genomes. Proceedings of the National Academy of Sciences of the United States of America 118, (2021).

17. Cui, J. & Wang, L. F. Genomic Mining Reveals Deep Evolutionary Relationships between Bornaviruses and Bats. Viruses 7, 5792–5800 (2015).

18. Gilbert, C. et al. Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes. Proc Biol Sci 281, 20141122 (2014).

19. Horie, M. & Tomonaga, K. Paleovirology of bornaviruses: What can be learned from molecular fossils of bornaviruses. Virus Res 262, 2-9 (2018).

20. Horie, M., Kobayashi, Y., Suzuki, Y. & Tomonaga, K. Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philos Trans R Soc Lond B Biol Sci 368, 20120499 (2013).

21. Horie, M. et al. An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus. Sci Rep 6, 25873 (2016).

22. Kobayashi, Y. et al. Exaptation of Bornavirus-Like Nucleoprotein Elements in Afrotherians. PLoS Pathog 12, e1005785 (2016).

23. Hyndman, T. H., Shilton, C. M., Stenglein, M. D. & Wellehan, J. F. X. Divergent bornaviruses from Australian carpet pythons with neurological disease date the origin of extant Bornaviridae prior to the end-Cretaceous extinction. PLoS Pathog 14, e1006881 (2018).

24. Sofuku, K., Parrish, N. F., Honda, T. & Tomonaga, K. Transcription Profiling Demonstrates Epigenetic Control of Non-retroviral RNA Virus-Derived Elements in the Human Genome. Cell Rep 12, 1548–1554 (2015).

25. Fujino, K., Horie, M., Honda, T., Merriman, D. K. & Tomonaga, K. Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome. Proc Natl Acad Sci U S A 111, 13175–13180 (2014).

26. Fujino, K. et al. A Human Endogenous Bornavirus-Like Nucleoprotein Encodes a Mitochondrial Protein Associated with Cell Viability. Journal of virology 95, e0203020 (2021).

27. Zheng, J. et al. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning. Scientific reports 8, 15264 (2018).

28. Hock, M. et al. RNA induced polymerization of the Borna disease virus nucleoprotein. Virology 397, 64–72 (2010).

29. Moran, J. v et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996).

30. Mugal, C. F., Wolf, J. B. & Kaj, I. Why time matters: codon evolution and the temporal dynamics of dN/dS. Mol Biol Evol 31, 212–231 (2014).

31. Rudolph, M. G. et al. Crystal structure of the borna disease virus nucleoprotein. Structure 11, 1219–1226 (2003).

32. Tang, X. & Bruce, J. E. Chemical cross-linking for protein-protein interaction studies. Methods Mol Biol 492, 283–293 (2009).

33. Aswad, A. & Katzourakis, A. Paleovirology and virally derived immunity. Trends Ecol Evol 27, 627–636 (2012).

34. Matsumoto, Y. et al. Bornavirus closely associates and segregates with host chromosomes to ensure persistent intranuclear infection. Cell Host Microbe 11, 492–503 (2012).

35. Sasaki, S. & Ludwig, H. In borna disease virus infected rabbit neurons 100 nm particle structures accumulate at areas of Joest-Degen inclusion bodies. Zentralbl Veterinarmed B 40, 291–297 (1993).

36. Chase, G. et al. Borna disease virus matrix protein is an integral component of the viral ribonucleoprotein complex that does not interfere with polymerase activity. J Virol 81, 743–749 (2007).

37. Schneider, U., Naegele, M., Staeheli, P. & Schwemmle, M. Active borna disease virus polymerase complex requires a distinct nucleoprotein-to-phosphoprotein ratio but no viral X protein. J Virol 77, 11781–11789 (2003).

38. Komatsu, Y., Tanaka, C., Komorizono, R. & Tomonaga, K. In vivo biodistribution analysis of transmission competent and defective RNA virusbased episomal vector. Scientific reports 10, 5890 (2020).

39. Daito, T. et al. A novel borna disease virus vector system that stably expresses foreign proteins from an intercistronic noncoding region. Journal of virology 85, 12170–8 (2011).

40. Palanichamy, J. K. et al. RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation. The Journal of clinical investigation 126, 1495–511 (2016).

41. Hung, T. et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350, 455–9 (2015).

42. Fu, K. et al. Biological and RNA regulatory function of MOV10 in mammalian germ cells. BMC biology 17, 39 (2019).

43. Kini, H. K., Silverman, I. M., Ji, X., Gregory, B. D. & Liebhaber, S. A. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. RNA 22, 61–74 (2016).

44. Kini, H. K., Kong, J. & Liebhaber, S. A. Cytoplasmic poly(A) binding protein C4 serves a critical role in erythroid differentiation. Molecular and cellular biology 34, 1300–9 (2014).

45. Kondo, Y., Oubridge, C., van Roon, A.-M. M. & Nagai, K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5’ splice site recognition. eLife 4, (2015).

46. Gallia, G. L., Johnson, E. M. & Khalili, K. Puralpha: a multifunctional singlestranded DNA- and RNA-binding protein. Nucleic acids research 28, 3197–205 (2000).

47. Pizarro, J. G. & Cristofari, G. Post-Transcriptional Control of LINE-1 Retrotransposition by Cellular Host Factors in Somatic Cells. Frontiers in cell and developmental biology 4, 14 (2016).

48. Taylor, M. S. et al. Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition. Cell 155, 1034–48 (2013).

49. Goodier, J. L., Cheung, L. E. & Kazazian, H. H. Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition. Nucleic acids research 41, 7401–19 (2013).

50. Moldovan, J. B. & Moran, J. v. The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition. PLoS genetics 11, e1005121 (2015).

51. Kobayashi, T., Winslow, S., Sunesson, L., Hellman, U. & Larsson, C. PKCα binds G3BP2 and regulates stress granule formation following cellular stress. PloS one 7, e35820 (2012).

52. Gallois-Montbrun, S. et al. Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. Journal of virology 81, 2165–78 (2007).

53. Goodier, J. L., Cheung, L. E. & Kazazian, H. H. MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells. PLoS genetics 8, e1002941 (2012).

54. Burgess, H. M. et al. Nuclear relocalisation of cytoplasmic poly(A)-binding proteins PABP1 and PABP4 in response to UV irradiation reveals mRNAdependent export of metazoan PABPs. Journal of cell science 124, 3344–55 (2011).

55. Burgess, H. M. & Gray, N. K. An integrated model for the nucleo-cytoplasmic transport of cytoplasmic poly(A)-binding proteins. Communicative & integrative biology 5, 243–7 (2012).

56. Daigle, J. G. et al. Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity. Acta neuropathologica 131, 605–20 (2016).

57. Protter, D. S. W. & Parker, R. Principles and Properties of Stress Granules. Trends in cell biology 26, 668–679 (2016).

58. Kedersha, N. et al. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. The Journal of cell biology 212, 845–60 (2016).

59. Kazazian, H. H. Genetics. L1 retrotransposons shape the mammalian genome. Science 289, 1152–1153 (2000).

60. Doucet, A. J. et al. Characterization of LINE-1 ribonucleoprotein particles. PLoS genetics 6, (2010).

61. Hu, S. et al. SAMHD1 Inhibits LINE-1 Retrotransposition by Promoting Stress Granule Formation. PLoS genetics 11, e1005367 (2015).

62. Goodier, J. L., Zhang, L., Vetter, M. R. & Kazazian, H. H. LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol Cell Biol 27, 6469–6483 (2007).

63. Kimberland, M. L. et al. Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum Mol Genet 8, 1557–1560 (1999).

64. Farkash, E. A., Kao, G. D., Horman, S. R. & Prak, E. T. Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucleic Acids Res 34, 1196–1204 (2006).

65. Martin, E. W. & Holehouse, A. S. Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerging topics in life sciences 4, 307–329 (2020).

66. Prilusky, J. et al. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21, 3435–3438 (2005).

67. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

68. van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 13, 508–514 (2016).

69. Best, S., le Tissier, P., Towers, G. & Stoye, J. P. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382, 826–829 (1996).

70. Mura, M. et al. Late viral interference induced by transdominant Gag of an endogenous retrovirus. Proc Natl Acad Sci U S A 101, 11117–11122 (2004).

71. Cuevas, R. A. et al. MOV10 Provides Antiviral Activity against RNA Viruses by Enhancing RIG-I-MAVS-Independent IFN Induction. J Immunol 196, 3877– 3886 (2016).

72. Reineke, L. C., Kedersha, N., Langereis, M. A., van Kuppeveld, F. J. M. & Lloyd, R. E. Stress granules regulate double-stranded RNA-dependent protein kinase activation through a complex containing G3BP1 and Caprin1. mBio 6, e02486 (2015).

73. Reineke, L. C. & Lloyd, R. E. The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses. Journal of virology 89, 2575–89 (2015).

74. Onomoto, K. et al. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PloS one 7, e43031 (2012).

75. Strange, K. Cellular volume homeostasis. Advances in physiology education 28, 155–9 (2004).

76. Bourque, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nature reviews. Neuroscience 9, 519–31 (2008).

77. Handler, J. S. & Kwon, H. M. Kidney cell survival in high tonicity. Comparative biochemistry and physiology. Part A, Physiology 117, 301–6 (1997).

78. Halterman, J. A., Kwon, H. M. & Wamhoff, B. R. Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5). Am J Physiol Cell Physiol 302, C1-8 (2012).

79. Miyakawa, H., Woo, S. K., Dahl, S. C., Handler, J. S. & Kwon, H. M. Tonicityresponsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Proceedings of the National Academy of Sciences of the United States of America 96, 2538–42 (1999).

80. Bounedjah, O. et al. Macromolecular crowding regulates assembly of mRNA stress granules after osmotic stress: new role for compatible osmolytes. The Journal of biological chemistry 287, 2446–58 (2012).

81. Mahboubi, H. & Stochaj, U. Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease. Biochim Biophys Acta Mol Basis Dis 1863, 884– 895 (2017).

82. Franchini, D. M. et al. Microtubule-Driven Stress Granule Dynamics Regulate Inhibitory Immune Checkpoint Expression in T Cells. Cell Rep 26, 94-107.e7 (2019).

83. Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727–36 (2013).

84. Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. The Journal of cell biology 201, 361–72 (2013).

85. Kiebler, M. A. & Bassell, G. J. Neuronal RNA granules: movers and makers. Neuron 51, 685–90 (2006).

86. Barbee, S. A. et al. Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52, 997–1009 (2006).

87. Beck, C. R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159–1170 (2010).

88. Li, X. et al. The MOV10 helicase inhibits LINE-1 mobility. J Biol Chem 288, 21148–21160 (2013).

89. Giorgi, G., Virgili, M., Monti, B. & del Re, B. Long INterspersed nuclear Elements (LINEs) in brain and non-brain tissues of the rat. Cell Tissue Res 374, 17–24 (2018).

90. Sookdeo, A., Hepp, C. M. & Boissinot, S. Contrasted patterns of evolution of the LINE-1 retrotransposon in perissodactyls: the history of a LINE-1 extinction. Mobile DNA 9, 12 (2018).

91. Cantrell, M. A., Scott, L., Brown, C. J., Martinez, A. R. & Wichman, H. A. Loss of LINE-1 activity in the megabats. Genetics 178, 393–404 (2008).

92. Grahn, R. A., Rinehart, T. A., Cantrell, M. A. & Wichman, H. A. Extinction of LINE-1 activity coincident with a major mammalian radiation in rodents. Cytogenetic and genome research 110, 407–15 (2005).

93. Platt, R. N., Mangum, S. F. & Ray, D. A. Pinpointing the vesper bat transposon revolution using the Miniopterus natalensis genome. Mob DNA 7, 12 (2016).

94. Senft, A. D. & Macfarlan, T. S. Transposable elements shape the evolution of mammalian development. Nature reviews. Genetics 22, 691–711 (2021).

95. Frank, J. A. & Feschotte, C. Co-option of endogenous viral sequences for host cell function. Current opinion in virology 25, 81–89 (2017).

96. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

97. Tokunaga, T., Yamamoto, Y., Sakai, M., Tomonaga, K. & Honda, T. Antiviral activity of favipiravir (T-705) against mammalian and avian bornaviruses. Antiviral Res 143, 237–245 (2017).

98. Kojima, S., Honda, T., Matsumoto, Y. & Tomonaga, K. Heat stress is a potent stimulus for enhancing rescue efficiency of recombinant Borna disease virus. Microbiol Immunol 58, 636–642 (2014).

99. Yanai, M., Sakai, M., Makino, A. & Tomonaga, K. Dual function of the nuclear export signal of the Borna disease virus nucleoprotein in nuclear export activity and binding to viral phosphoprotein. Virology journal 14, 126 (2017).

100. Yanai, H. et al. Development of a novel Borna disease virus reverse genetics system using RNA polymerase II promoter and SV40 nuclear import signal. Microbes Infect 8, 1522–1529 (2006).

101. Perez, M., Sanchez, A., Cubitt, B., Rosario, D. & de la Torre, J. C. A reverse genetics system for Borna disease virus. J Gen Virol 84, 3099–3104 (2003).

102. Honda, T., Horie, M., Daito, T., Ikuta, K. & Tomonaga, K. Molecular chaperone BiP interacts with Borna disease virus glycoprotein at the cell surface. J Virol 83, 12622–12625 (2009).

103. Singh, U. & Wurtele, E. S. orfipy: a fast and flexible tool for extracting ORFs. Bioinformatics 37, 3019-3020 (2021).

104. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772– 780 (2013).

105. Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol Biol Evol 34, 1812–1819 (2017).

106. Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3, 418– 426 (1986).

107. Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33, 1870–1874 (2016).

108. Wang, Z. et al. Unique expression patterns of multiple key genes associated with the evolution of mammalian flight. Proc Biol Sci 281, 20133133 (2014).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る