リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「乳酸菌の免疫調節機能に関する研究:Lactococcus lactis JCM 5805の免疫賦活作用とLactobacillus paracasei KW3110のインフラマソーム抑制効果」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

乳酸菌の免疫調節機能に関する研究:Lactococcus lactis JCM 5805の免疫賦活作用とLactobacillus paracasei KW3110のインフラマソーム抑制効果

鈴木 弘章 東北大学

2021.03.03

概要

1. 自然免疫による病原体認識と生体防御機構
「牛の乳搾りに従事する女性たちは天然痘に罹らない」という観察結果から,エドワード・ジェンナーは牛痘を接種することで天然痘を予防できることを発見した (1).この「二度なし現象」の発見をきっかけとして,同じ病原体と再び遭遇した時に一回目よりも迅速に効率的に反応できる仕組みの解明を中心に免疫学は発展した. 現在では,T 細胞,B 細胞が過去に遭遇した病原体の「記憶」として生体内に長く留まること(「免疫記憶」と呼ばれる)で二度なし現象が生じることがわかっている.この T 細胞,B 細胞を中心とする過去の感染の記憶を使った免疫防御システムは獲得免疫と呼ばれる (2).獲得免疫が感染した病原体を特異的に見分け応答までに時間を要するのに対し,病原体の持つ特徴的な分子パターンをいち早く感知し,それを排除する仕組みは自然免疫と呼ばれる.自然免疫は病原体の速やかな排除のみならず,病原体由来の分子を T 細胞に提示することで獲得免疫の発動にも寄与する (3).

自然免疫はマクロファージや樹状細胞といった貪食系の細胞がその中心的役割を担う.これらの細胞はパターン認識受容体(Pattern Recognition Receptors ; PRRs)と呼ばれる受容体を発現し,細菌やウイルスといった病原体の有する特徴的な分子パターン(Pathogen Associated Molecular Patterns ; PAMPs)を認識する. PRRs の代表として Toll 様受容体(Toll-like Receptors ; TLRs)があり,これまでに哺乳類で複数のTLRs ファミリーが同定され,それぞれが異なる分子を認識することが知られている (4).自然免疫研究の礎を築いた TLRs であるが,その解明にはショウジョウバエを用いた研究が契機となった.ショウジョウバエ胚の背腹軸に沿ったパターン形成に関わる受容体としてクローニングされた

Toll は,発生のみならず感染防御にも重要な役割を果たすことが発見された (5).その後,哺乳類における TLRs に注目が向けられ,TLR4 がショウジョウバエTollのヒトホモログとして最初に報告され (6),続いてこの分子がグラム陰性菌の成分であるリポ多糖(lipopolysaccharide ; LPS)を認識することが明らかになった (7,8).TLR4 以外の TLRs としては,ペプチドグリカンやリポタイコ酸を認識する TLR2 (9),二本鎖 RNA を認識する TLR3 (10),一本鎖 RNA を認識する TLR7/8 (11-13),非メチル化 CpG モチーフを有する DNA を認識する TLR9 が知られて いる (14).また,TLR が主に細胞膜あるいはエンドソーム膜に発現し病原体を 認識するのに対し,細胞質に侵入した病原体を認識する機構も存在する.例えば, Nucleotide-binding oligomerization domain-containing protein 1,2(NOD1,2)に代表される Nod-like Receptors(NLRs)と呼ばれる細胞質内タンパクは細菌のペプチドグリカン由来分子構造を認識する (15,16).その他にウイルス由来の二本鎖RNA はRetinoic-acid-inducible protein(I RIG-I)(17) やMelanomadifferentiation associated gene 5(MDA5)(18,19) に,DNA は cyclic GMP-AMP Synthase(cGAS)に認識されることが知られている (20).

病原体が PRRs によって認識されると下流の細胞内シグナルが活性化し,炎症性サイトカインやインターフェロンが誘導される(Figure 1).PRRs のうちTLRsシグナルを介在するアダプター分子として MyD88 と TRIF が重要な役割を果たす.例えば,TLR4 はリガンドを認識すると MyD88 を介した経路で NF-κB を核内に移行させ TNF(Tumor Necrosis Factor)-αや IL(Interleukin)-6 といった炎症性サイトカインを誘導する (21).一方で,TRIF を介した経路では IRF3 のリン酸化を促しIFN-βプロモーターを活性化することでI 型インターフェロンの一種である IFN-βを誘導する(22-24).このようなシグナルを介して産生された炎症性サイトカインは炎症反応を形成し,各種免疫細胞の活性化を促すことで病原体の排除に寄与する (25).また,I 型インターフェロンはウイルスの増殖を阻害するタンパクの発現を誘導するなどして強力な抗ウイルス機能を発揮する (26).

Figure 1. 各種 PRRs と細胞内シグナル伝達経路(Steven G Reed et al., Nature Medicine (2013)19 より引用)

2. 樹状細胞による獲得免疫の始動と plasmacytoid DCs の特徴
自然免疫は上述したサイトカインなどの液性因子の産生の他に獲得免疫の始動にも寄与する.獲得免疫の始動には自然免疫細胞の中でも樹状細胞(Dendtiric Cells ; DCs)がその中心的役割を担う.樹状細胞はマウス脾臓から樹の枝のように突起を伸ばす細胞として同定され (27),その後の研究で T 細胞の反応性を飛躍的に高める機能を有することが見出された (28,29).現在では,T 細胞に抗原を提示し獲得免疫を始動する抗原提示細胞(Antigen Presenting Cells ; APCs)として主要な役割を果たすことが知られている.樹状細胞が T 細胞による抗原特異的免疫応答を始動するには主に 3 つのシグナルを介すると考えられている.1つ目が主要組織適合遺伝子複合体(Major Histocompatibility Complex ; MHC)を介した T 細胞への抗原情報の提示である.抗原由来のペプチドは MHC 分子に結合して樹状細胞表面に提示されると,その複合体と結合できる T 細胞受容体(T cell Receptor ; TCR)を有する T 細胞に認識され,抗原特異的免疫応答が始動する.2 つ目が補助刺激分子(co-stimulatory molecules)による T 細胞の活性化である.活性化された樹状細胞は補助刺激分子を細胞表面に発現し,T 細胞は補助刺激分子のシグナルを受け取ることで活性化する.代表的な分子として,樹状細胞表面に提示された CD80/86 は T 細胞表面上の CD28 に結合することで T 細胞の活性化を促進する.3 つ目が樹状細胞より産生されたサイトカインによる T細胞の分化制御である.活性化された樹状細胞はサイトカインを産生するが,そのサイトカインの種類によって T 細胞はそれぞれ異なる機能を有するエフェクターT 細胞(Th1, Th2, Th17 など)に分化する.例えば IL-12 や IFN-γは Th1 に, IL-4 や IL-5 は Th2 に,IL-17 は Th17 に分化させる能力を有する.樹状細胞に発現する TLRs とリガンドの結合は炎症性サイトカインやインターフェロンの発現の他に,補助刺激分子や MHC 分子の発現を誘導することで樹状細胞の成熟と T 細胞の活性化を誘導する.

獲得免疫の始動に大きな役割を果たす樹状細胞であるが,大別すると 2 つのサブセットに分類される.そのうち 1 つが古典的樹状細胞(conventional DCs ; cDCs)であり,もう一方が形質細胞様樹状細胞(plasmacytoid DCs ; pDCs)である.cDCs が T 細胞に抗原を提示する APCs として機能を発揮する一方で,pDCsはヒト末梢血中に存在する大量のインターフェロンを産生する細胞として同定された (30,31).ほとんどの細胞は I 型インターフェロンを産生する能力を有するが,その産生能力はわずかである.一方,pDCs は I 型インターフェロンの中でも IFN-αを大量に産生し,その他の特徴として TLR7 と TLR9 を高発現することで主にウイルス由来の RNA または DNA を認識する.TLR7 と TLR9 による病原体の認識後,pDCs は MyD88 を介して転写因子 IRF7 を核内に移行させ,IFN- αの転写を促進する(Figure 2).IRF7 はほとんどの細胞で発現しておらず I 型インターフェロン刺激によってその発現が誘導されるが,pDCs は恒常的に IRF7を発現しており,リガンド刺激に応じて迅速に IFN-αを産生することができる (32,33).以上の特徴から,pDCs が抗ウイルス免疫において非常に強力な免疫細胞であることが示唆されている.実際,生体から pDCs を除去したマウスに肝炎ウイルスを感染させると IFN-αが産生されず,肝炎が重症化する(34).また,pDCsにのみIRF7 を発現させたマウスではウイルス感染に対して抵抗性を示すことから,pDCs における IRF7 依存的なシグナルがウイルス感染防御に対して主要な役割を果たすことが示唆される(35).これら I 型インターフェロン産生を介した免疫制御に加えて,pDCs は獲得免疫を活性化することでも抗ウイルス能を発揮する.pDCs を除去したマウスでは,ウイルス抗原特異的な細胞傷害性 T 細胞の増殖が抑制され (36),また,抗原特異的免疫応答を司る CD4+ T 細胞の機能も低下する (37).この pDCs による獲得免疫の活性化は,cDCs と協調して発揮されることが示唆されている (38,39).また,pDCs によるウイルスの認識にも感染細胞との細胞間相互作用が必要であることがわかっており(40,41),pDCs は I 型インターフェロン産生細胞としての役割のみならず,他の免疫細胞と相互作用をすることで抗ウイルス免疫を発揮することが示唆されている.

Figure 2. pDCs の自然免疫と獲得免疫に対する役割( Dana Mitchell et al., Journal of Neuroimmunology (2018) 322 より引用)

3. マクロファージによる炎症反応形成とインフラマソームの関与
樹状細胞同様にマクロファージもまた,自然免疫において重要な役割を果たす.組織の傷害や感染に伴い損傷部位に集まったマクロファージは,一酸化窒素や活性酸素を放出することで感染防御に寄与するとともに,TNF-αや IL-1 とい った炎症メディエーターを産生し他の免疫細胞を感染部位に呼び寄せる (42,43).マクロファージの活性化とともに放出される一酸化窒素や活性酸素は微生物に とって強力な毒となる一方で,周辺組織にも損傷を与え過剰な炎症を誘発しう る.そのため,マクロファージによる炎症反応は生体内で適切に制御される必要 があり,この制御機構が破綻すると慢性的な炎症を起因とした様々な病態を引 き起こすことがわかっている.例えば,代謝性疾患には脂肪組織中のマクロファ ージが関与することが報告されている.通常状態であれば M2 マクロファージ と呼ばれる組織修復型のマクロファージが恒常性維持に寄与しているが,肥満 などによって炎症型のマクロファージにスイッチし,炎症を惹起することで糖 代謝異常が誘発される(44,45).

マクロファージが関与する病態の一部に,近年インフラマソームと呼ばれる複合体タンパク質の関与が報告されている.インフラマソームは病原体感染や danger signal と呼ばれる生体内危険因子によって細胞質内で形成される複合体タンパク質で,NLRs または absent in melanoma 2(AIM2)とアダプタータンパクである apoptosis-associated speck-like protein containing caspase recruitment domain(ASC),システインプロテアーゼである caspase-1 によって構成される(46,47).インフラマソーム活性化の刺激に伴い,NLRs または AIM2 は ASC,pro-caspase- 1 と複合体を形成し,インフラマソーム形成に伴って接近した pro-caspase-1 は互いに自己消化して活性型 caspase-1 を生成する.活性型 caspase-1 は IL-1 ファミリーサイトカインである IL-1βや IL-18 の前駆体を切断して成熟化し,炎症反応を誘導する(48).これらインフラマソームの中でも最も研究が進んだ分子が NLR family pyrin domain containing protein 3(NLRP3)インフラマソームである(Figure 3).NLRP3 インフラマソームは様々な刺激によって活性化され,その中には病原体感染,ATP や Nigericin による細胞質内カリウム濃度の低下,尿酸結晶,アルミニウム,シリカの貪食に伴うリソソーム膜の破壊などが挙げられる(49-54).通常,インフラマソームの活性化は病原体感染から生体を防御する役割を担う一方で,その過剰な活性化は 2 型糖尿病,痛風,関節炎といった炎症を起因とする病態に関与する(55-57).また,加齢に伴って免疫機能が低下する免疫老化にも関与することが報告されており,その制御機構に注目が集まっている(58,59).

Figure 3. NLRP3 インフラマソーム活性化機構(Eun-Kyeong Jo et al., Cellular & Molecular Immunology (2016) 13 より引用)

この論文で使われている画像

参考文献

1. Jenner, E. (1799) History of the Inoculation of the Cow-Pox: Further Observations on the Variolae Vaccinae, or Cow-Pox. The Medical and physical journal 1, 313-318

2. Cooper, M. D., and Alder, M. N. (2006) The evolution of adaptive immune systems. Cell 124, 815-822

3. Akira, S., Uematsu, S., and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell 124, 783-801

4. O'Neill, L. A., Golenbock, D., and Bowie, A. G. (2013) The history of Toll-like receptors - redefining innate immunity. Nature reviews. Immunology 13, 453-460

5. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., and Hoffmann, J. A. (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983

6. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A., Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397

7. Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B., and Beutler, B. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085-2088

8. Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., and Akira, S. (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. Journal of immunology 162, 3749-3752

9. Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., and Akira, S. (1999) Differential roles of TLR2 and TLR4 in recognition of gram- negative and gram-positive bacterial cell wall components. Immunity 11, 443-451

10. Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738

11. Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., and Akira, S. (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nature immunology 3, 196-200

12. Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., and Bauer, S. (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526-1529

13. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S., and Reis e Sousa, C. (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529-1531

14. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745

15. Chamaillard, M., Hashimoto, M., Horie, Y., Masumoto, J., Qiu, S., Saab, L., Ogura, Y., Kawasaki, A., Fukase, K., Kusumoto, S., Valvano, M. A., Foster, S. J., Mak, T. W., Nunez, G., and Inohara, N. (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nature immunology 4, 702- 707

16. Inohara, N., Ogura, Y., Fontalba, A., Gutierrez, O., Pons, F., Crespo, J., Fukase, K., Inamura, S., Kusumoto, S., Hashimoto, M., Foster, S. J., Moran, A. P., Fernandez- Luna, J. L., and Nunez, G. (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. The Journal of biological chemistry 278, 5509-5512

17. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature immunology 5, 730-737

18. Kang, D. C., Gopalkrishnan, R. V., Wu, Q., Jankowsky, E., Pyle, A. M., and Fisher, P. B. (2002) mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proceedings of the National Academy of Sciences of the United States of America 99, 637-642

19. Andrejeva, J., Childs, K. S., Young, D. F., Carlos, T. S., Stock, N., Goodbourn, S., and Randall, R. E. (2004) The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proceedings of the National Academy of Sciences of the United States of America 101, 17264-17269

20. Sun, L., Wu, J., Du, F., Chen, X., and Chen, Z. J. (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786- 791

21. Akira, S., and Takeda, K. (2004) Toll-like receptor signalling. Nature reviews. Immunology 4, 499-511

22. Hoebe, K., Du, X., Georgel, P., Janssen, E., Tabeta, K., Kim, S. O., Goode, J., Lin, P., Mann, N., Mudd, S., Crozat, K., Sovath, S., Han, J., and Beutler, B. (2003) Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743-748

23. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., and Akira, S. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640-643

24. Sakaguchi, S., Negishi, H., Asagiri, M., Nakajima, C., Mizutani, T., Takaoka, A., Honda, K., and Taniguchi, T. (2003) Essential role of IRF-3 in lipopolysaccharide- induced interferon-β gene expression and endotoxin shock. Biochemical and biophysical research communications 306, 860-866

25. Dinarello, C. A. (2007) Historical insights into cytokines. European journal of immunology 37 Suppl 1, S34-45

26. Stetson, D. B., and Medzhitov, R. (2006) Type I interferons in host defense. Immunity 25, 373-381

27. Steinman, R. M., and Cohn, Z. A. (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. The Journal of experimental medicine 137, 1142-1162

28. Nussenzweig, M. C., and Steinman, R. M. (1980) Contribution of dendritic cells to stimulation of the murine syngeneic mixed leukocyte reaction. The Journal of experimental medicine 151, 1196-1212

29. Van Voorhis, W. C., Valinsky, J., Hoffman, E., Luban, J., Hair, L. S., and Steinman, R. M. (1983) Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication. The Journal of experimental medicine 158, 174-191

30. Siegal, F. P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P. A., Shah, K., Ho, S., Antonenko, S., and Liu, Y. J. (1999) The nature of the principal type 1 interferon- producing cells in human blood. Science 284, 1835-1837

31. Cella, M., Jarrossay, D., Facchetti, F., Alebardi, O., Nakajima, H., Lanzavecchia, A., and Colonna, M. (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature medicine 5, 919-923

32. Kawai, T., Sato, S., Ishii, K. J., Coban, C., Hemmi, H., Yamamoto, M., Terai, K., Matsuda, M., Inoue, J., Uematsu, S., Takeuchi, O., and Akira, S. (2004) Interferon- alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature immunology 5, 1061-1068

33. Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., Shimada, N., Ohba, Y., Takaoka, A., Yoshida, N., and Taniguchi, T. (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772-777

34. Cervantes-Barragan, L., Zust, R., Weber, F., Spiegel, M., Lang, K. S., Akira, S., Thiel, V., and Ludewig, B. (2007) Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood 109, 1131-1137

35. Webster, B., Werneke, S. W., Zafirova, B., This, S., Coleon, S., Decembre, E., Paidassi, H., Bouvier, I., Joubert, P. E., Duffy, D., Walzer, T., Albert, M. L., and Dreux, M. (2018) Plasmacytoid dendritic cells control dengue and Chikungunya virus infections via IRF7-regulated interferon responses. eLife 7

36. Swiecki, M., Gilfillan, S., Vermi, W., Wang, Y., and Colonna, M. (2010) Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity 33, 955-966

37. Cervantes-Barragan, L., Lewis, K. L., Firner, S., Thiel, V., Hugues, S., Reith, W., Ludewig, B., and Reizis, B. (2012) Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proceedings of the National Academy of Sciences of the United States of America 109, 3012-3017

38. Rogers, G. L., Shirley, J. L., Zolotukhin, I., Kumar, S. R. P., Sherman, A., Perrin, G. Q., Hoffman, B. E., Srivastava, A., Basner-Tschakarjan, E., Wallet, M. A., Terhorst, C., Biswas, M., and Herzog, R. W. (2017) Plasmacytoid and conventional dendritic cells cooperate in crosspriming AAV capsid-specific CD8(+) T cells. Blood 129, 3184- 3195

39. Brewitz, A., Eickhoff, S., Dahling, S., Quast, T., Bedoui, S., Kroczek, R. A., Kurts, C., Garbi, N., Barchet, W., Iannacone, M., Klauschen, F., Kolanus, W., Kaisho, T., Colonna, M., Germain, R. N., and Kastenmuller, W. (2017) CD8(+) T Cells Orchestrate pDC-XCR1(+) Dendritic Cell Spatial and Functional Cooperativity to Optimize Priming. Immunity 46, 205-219

40. Takahashi, K., Asabe, S., Wieland, S., Garaigorta, U., Gastaminza, P., Isogawa, M., and Chisari, F. V. (2010) Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection. Proceedings of the National Academy of Sciences of the United States of America 107, 7431-7436

41. Dreux, M., Garaigorta, U., Boyd, B., Decembre, E., Chung, J., Whitten-Bauer, C., Wieland, S., and Chisari, F. V. (2012) Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell host & microbe 12, 558-570

42. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A., and Pamer, E. G. (2003) TNF/iNOS-Producing Dendritic Cells Mediate Innate Immune Defense against Bacterial Infection. Immunity 19, 59-70

43. Bosschaerts, T., Guilliams, M., Stijlemans, B., Morias, Y., Engel, D., Tacke, F., Herin, M., De Baetselier, P., and Beschin, A. (2010) Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling. PLoS pathogens 6, e1001045

44. Lumeng, C. N., Bodzin, J. L., and Saltiel, A. R. (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. The Journal of clinical investigation 117, 175-184

45. Odegaard, J. I., Ricardo-Gonzalez, R. R., Goforth, M. H., Morel, C. R., Subramanian, V., Mukundan, L., Red Eagle, A., Vats, D., Brombacher, F., Ferrante, A. W., and Chawla, A. (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116-1120

46. Martinon, F., Burns, K., and Tschopp, J. (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular cell 10, 417-426

47. Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D. R., Latz, E., and Fitzgerald, K. A. (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514-518

48. Bauernfeind, F., Ablasser, A., Bartok, E., Kim, S., Schmid-Burgk, J., Cavlar, T., and Hornung, V. (2011) Inflammasomes: current understanding and open questions. Cellular and molecular life sciences : CMLS 68, 765-783

49. Mariathasan, S., Newton, K., Monack, D. M., Vucic, D., French, D. M., Lee, W. P., Roose-Girma, M., Erickson, S., and Dixit, V. M. (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213-218

50. Allen, I. C., Scull, M. A., Moore, C. B., Holl, E. K., McElvania-TeKippe, E., Taxman, D. J., Guthrie, E. H., Pickles, R. J., and Ting, J. P. (2009) The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556-565

51. Mariathasan, S., Weiss, D. S., Newton, K., McBride, J., O'Rourke, K., Roose-Girma, M., Lee, W. P., Weinrauch, Y., Monack, D. M., and Dixit, V. M. (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228-232

52. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. (2006) Gout- associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237- 241

53. Franchi, L., and Nunez, G. (2008) The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. European journal of immunology 38, 2085-2089

54. Hornung, V., Bauernfeind, F., Halle, A., Samstad, E. O., Kono, H., Rock, K. L., Fitzgerald, K. A., and Latz, E. (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature immunology 9, 847-856

55. Vandanmagsar, B., Youm, Y. H., Ravussin, A., Galgani, J. E., Stadler, K., Mynatt, R. L., Ravussin, E., Stephens, J. M., and Dixit, V. D. (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature medicine 17, 179-188

56. Kingsbury, S. R., Conaghan, P. G., and McDermott, M. F. (2011) The role of the NLRP3 inflammasome in gout. Journal of inflammation research 4, 39-49

57. Vande Walle, L., Van Opdenbosch, N., Jacques, P., Fossoul, A., Verheugen, E., Vogel, P., Beyaert, R., Elewaut, D., Kanneganti, T. D., van Loo, G., and Lamkanfi, M. (2014) Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512, 69-73

58. Youm, Y. H., Kanneganti, T. D., Vandanmagsar, B., Zhu, X., Ravussin, A., Adijiang, A., Owen, J. S., Thomas, M. J., Francis, J., Parks, J. S., and Dixit, V. D. (2012) The Nlrp3 inflammasome promotes age-related thymic demise and immunosenescence. Cell reports 1, 56-68

59. Youm, Y. H., Grant, R. W., McCabe, L. R., Albarado, D. C., Nguyen, K. Y., Ravussin, A., Pistell, P., Newman, S., Carter, R., Laque, A., Munzberg, H., Rosen, C. J., Ingram, D. K., Salbaum, J. M., and Dixit, V. D. (2013) Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell metabolism 18, 519-532

60. Reed, S. G., Orr, M. T., and Fox, C. B. (2013) Key roles of adjuvants in modern vaccines. Nature medicine 19, 1597-1608

61. Blaser, M. J. (2014) The microbiome revolution. The Journal of clinical investigation 124, 4162-4165

62. Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., Cheng, G., Yamasaki, S., Saito, T., Ohba, Y., Taniguchi, T., Takeda, K., Hori, S., Ivanov, II, Umesaki, Y., Itoh, K., and Honda, K. (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337-341

63. Vijay-Kumar, M., Aitken, J. D., Carvalho, F. A., Cullender, T. C., Mwangi, S., Srinivasan, S., Sitaraman, S. V., Knight, R., Ley, R. E., and Gewirtz, A. T. (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228-231

64. Dapito, D. H., Mencin, A., Gwak, G. Y., Pradere, J. P., Jang, M. K., Mederacke, I., Caviglia, J. M., Khiabanian, H., Adeyemi, A., Bataller, R., Lefkowitch, J. H., Bower, M., Friedman, R., Sartor, R. B., Rabadan, R., and Schwabe, R. F. (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21, 504- 516

65. Grivennikov, S. I., Wang, K., Mucida, D., Stewart, C. A., Schnabl, B., Jauch, D., Taniguchi, K., Yu, G. Y., Osterreicher, C. H., Hung, K. E., Datz, C., Feng, Y., Fearon, E. R., Oukka, M., Tessarollo, L., Coppola, V., Yarovinsky, F., Cheroutre, H., Eckmann, L., Trinchieri, G., and Karin, M. (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254-258

66. Tanoue, T., Morita, S., Plichta, D. R., Skelly, A. N., Suda, W., Sugiura, Y., Narushima, S., Vlamakis, H., Motoo, I., Sugita, K., Shiota, A., Takeshita, K., Yasuma-Mitobe, K., Riethmacher, D., Kaisho, T., Norman, J. M., Mucida, D., Suematsu, M., Yaguchi, T., Bucci, V., Inoue, T., Kawakami, Y., Olle, B., Roberts, B., Hattori, M., Xavier, R. J., Atarashi, K., and Honda, K. (2019) A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600-605

67. Metchnikoff., E. (1908) The Prolongation of Life. Nature 77, 289-290

68. Yanagihara, S., Kanaya, T., Fukuda, S., Nakato, G., Hanazato, M., Wu, X. R., Yamamoto, N., and Ohno, H. (2017) Uromodulin-SlpA binding dictates Lactobacillus acidophilus uptake by intestinal epithelial M cells. Int Immunol 29, 357-363

69. Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J.-P., and Ricciardi-Castagnoli, P. (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature immunology 2, 361-367

70. Niess, J. H., Brand, S., Gu, X., Landsman, L., Jung, S., McCormick, B. A., Vyas, J. M., Boes, M., Ploegh, H. L., Fox, J. G., Littman, D. R., and Reinecker, H. C. (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254-258

71. Jeon, S. G., Kayama, H., Ueda, Y., Takahashi, T., Asahara, T., Tsuji, H., Tsuji, N. M., Kiyono, H., Ma, J. S., Kusu, T., Okumura, R., Hara, H., Yoshida, H., Yamamoto, M., Nomoto, K., and Takeda, K. (2012) Probiotic Bifidobacterium breve induces IL-10- producing Tr1 cells in the colon. PLoS pathogens 8, e1002714

72. Kawashima, T., Kosaka, A., Yan, H., Guo, Z., Uchiyama, R., Fukui, R., Kaneko, D., Kumagai, Y., You, D. J., Carreras, J., Uematsu, S., Jang, M. H., Takeuchi, O., Kaisho, T., Akira, S., Miyake, K., Tsutsui, H., Saito, T., Nishimura, I., and Tsuji, N. M. (2013) Double-stranded RNA of intestinal commensal but not pathogenic bacteria triggers production of protective interferon-beta. Immunity 38, 1187-1197

73. Makino, S., Ikegami, S., Kano, H., Sashihara, T., Sugano, H., Horiuchi, H., Saito, T., and Oda, M. (2006) Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Journal of dairy science 89, 2873-2881

74. Parcina, M., Wendt, C., Goetz, F., Zawatzky, R., Zahringer, U., Heeg, K., and Bekeredjian-Ding, I. (2008) Staphylococcus aureus-Induced Plasmacytoid Dendritic Cell Activation Is Based on an IgG-Mediated Memory Response. The Journal of Immunology 181, 3823-3833

75. Jounai, K., Ikado, K., Sugimura, T., Ano, Y., Braun, J., and Fujiwara, D. (2012) Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9-dependent crosstalk with myeloid dendritic cells. PloS one 7, e32588

76. Jounai, K., Sugimura, T., Ohshio, K., and Fujiwara, D. (2015) Oral administration of Lactococcus lactis subsp. lactis JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection. PloS one 10, e0119055

77. Fujiwara, D., Inoue, S., Wakabayashi, H., and Fujii, T. (2004) The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Th2 cytokine expression and balance. International archives of allergy and immunology 135, 205-215

78. Morita, Y., Jounai, K., Sakamoto, A., Tomita, Y., Sugihara, Y., Suzuki, H., Ohshio, K., Otake, M., Fujiwara, D., Kanauchi, O., and Maruyama, M. (2018) Long-term intake of Lactobacillus paracasei KW3110 prevents age-related chronic inflammation and retinal cell loss in physiologically aged mice. Aging 10, 2723-2740

79. Morita, Y., Miwa, Y., Jounai, K., Fujiwara, D., Kurihara, T., and Kanauchi, O. (2018) Lactobacillus paracasei KW3110 Prevents Blue Light-Induced Inflammation and Degeneration in the Retina. Nutrients 10

80. Lou, Y., Liu, C., Kim, G. J., Liu, Y. J., Hwu, P., and Wang, G. (2007) Plasmacytoid Dendritic Cells Synergize with Myeloid Dendritic Cells in the Induction of Antigen- Specific Antitumor Immune Responses. The Journal of Immunology 178, 1534-1541

81. Seo, S. U., Kamada, N., Munoz-Planillo, R., Kim, Y. G., Kim, D., Koizumi, Y., Hasegawa, M., Himpsl, S. D., Browne, H. P., Lawley, T. D., Mobley, H. L., Inohara, N., and Nunez, G. (2015) Distinct Commensals Induce Interleukin-1beta via NLRP3 Inflammasome in Inflammatory Monocytes to Promote Intestinal Inflammation in Response to Injury. Immunity 42, 744-755

82. Desmet, C. J., and Ishii, K. J. (2012) Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nature reviews. Immunology 12, 479- 491

83. Orange, J. S., and Biron, C. A. (1996) An absolute and restricted requirement for IL- 12 in natural killer cell IFN-gamma production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. Journal of immunology 156, 1138-1142

84. Lucas, M., Schachterle, W., Oberle, K., Aichele, P., and Diefenbach, A. (2007) Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26, 503-517

85. Gherardi, M. M., Ramirez, J. C., and Esteban, M. (2003) IL-12 and IL-18 act in synergy to clear vaccinia virus infection: involvement of innate and adaptive components of the immune system. The Journal of general virology 84, 1961-1972

86. Lee, C. K., Rao, D. T., Gertner, R., Gimeno, R., Frey, A. B., and Levy, D. E. (2000) Distinct requirements for IFNs and STAT1 in NK cell function. Journal of immunology 165, 3571-3577

87. Gerosa, F., Gobbi, A., Zorzi, P., Burg, S., Briere, F., Carra, G., and Trinchieri, G. (2005) The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. Journal of immunology 174, 727-734

88. Medzhitov, R. (2001) Toll-like receptors and innate immunity. Nature reviews. Immunology 1, 135-145

89. Walseng, E., Furuta, K., Goldszmid, R. S., Weih, K. A., Sher, A., and Roche, P. A. (2010) Dendritic cell activation prevents MHC class II ubiquitination and promotes MHC class II survival regardless of the activation stimulus. The Journal of biological chemistry 285, 41749-41754

90. Askew, D., Chu, R. S., Krieg, A. M., and Harding, C. V. (2000) CpG DNA Induces Maturation of Dendritic Cells with Distinct Effects on Nascent and Recycling MHC- II Antigen-Processing Mechanisms. The Journal of Immunology 165, 6889-6895

91. Datta, S. K., Redecke, V., Prilliman, K. R., Takabayashi, K., Corr, M., Tallant, T., DiDonato, J., Dziarski, R., Akira, S., Schoenberger, S. P., and Raz, E. (2003) A Subset of Toll-Like Receptor Ligands Induces Cross-presentation by Bone Marrow-Derived Dendritic Cells. The Journal of Immunology 170, 4102-4110

92. Kapsenberg, M. L. (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nature reviews. Immunology 3, 984-993

93. Yoneyama, H., Matsuno, K., Toda, E., Nishiwaki, T., Matsuo, N., Nakano, A., Narumi, S., Lu, B., Gerard, C., Ishikawa, S., and Matsushima, K. (2005) Plasmacytoid DCs help lymph node DCs to induce anti-HSV CTLs. The Journal of experimental medicine 202, 425-435

94. Takagi, H., Fukaya, T., Eizumi, K., Sato, Y., Sato, K., Shibazaki, A., Otsuka, H., Hijikata, A., Watanabe, T., Ohara, O., Kaisho, T., Malissen, B., and Sato, K. (2011) Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity 35, 958-971

95. Diamond, M. S., and Pierson, T. C. (2015) Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell 162, 488-492

96. Holmes, E. C., and Burch, S. S. (2000) The causes and consequences of genetic variation in dengue virus. Trends in microbiology 8, 74-77

97. Halstead, S. B. (2007) Dengue. Lancet (London, England) 370, 1644-1652

98. Gubler, D. J. (2006) Dengue/dengue haemorrhagic fever: history and current status. Novartis Foundation symposium 277, 3-16; discussion 16-22, 71-13, 251-253

99. Srikiatkhachorn, A., Mathew, A., and Rothman, A. L. (2017) Immune-mediated cytokine storm and its role in severe dengue. Seminars in immunopathology 39, 563- 574

100. Guzman, M. G., and Kouri, G. (2002) Dengue: an update. The Lancet. Infectious diseases 2, 33-42

101. Kalayanarooj, S., Vaughn, D. W., Nimmannitya, S., Green, S., Suntayakorn, S., Kunentrasai, N., Viramitrachai, W., Ratanachu-eke, S., Kiatpolpoj, S., Innis, B. L., Rothman, A. L., Nisalak, A., and Ennis, F. A. (1997) Early clinical and laboratory indicators of acute dengue illness. The Journal of infectious diseases 176, 313-321

102. Fagundes, C. T., Costa, V. V., Cisalpino, D., Souza, D. G., and Teixeira, M. M. (2011) Therapeutic opportunities in dengue infection. Drug Development Research 72, 480- 500

103. Schoggins, J. W., Dorner, M., Feulner, M., Imanaka, N., Murphy, M. Y., Ploss, A., and Rice, C. M. (2012) Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro. Proceedings of the National Academy of Sciences of the United States of America 109, 14610-14615

104. Zellweger, R. M., Prestwood, T. R., and Shresta, S. (2010) Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell host & microbe 7, 128-139

105. Zust, R., Toh, Y. X., Valdes, I., Cerny, D., Heinrich, J., Hermida, L., Marcos, E., Guillen, G., Kalinke, U., Shi, P. Y., and Fink, K. (2014) Type I interferon signals in macrophages and dendritic cells control dengue virus infection: implications for a new mouse model to test dengue vaccines. Journal of virology 88, 7276-7285

106. Sarathy, V. V., White, M., Li, L., Gorder, S. R., Pyles, R. B., Campbell, G. A., Milligan, G. N., Bourne, N., and Barrett, A. D. (2015) A lethal murine infection model for dengue virus 3 in AG129 mice deficient in type I and II interferon receptors leads to systemic disease. Journal of virology 89, 1254-1266

107. Diamond, M. S., and Harris, E. (2001) Interferon inhibits dengue virus infection by preventing translation of viral RNA through a PKR-independent mechanism. Virology 289, 297-311

108. Helbig, K. J., Carr, J. M., Calvert, J. K., Wati, S., Clarke, J. N., Eyre, N. S., Narayana, S. K., Fiches, G. N., McCartney, E. M., and Beard, M. R. (2013) Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin. PLoS neglected tropical diseases 7, e2178

109. Hishiki, T., Han, Q., Arimoto, K., Shimotohno, K., Igarashi, T., Vasudevan, S. G., Suzuki, Y., and Yamamoto, N. (2014) Interferon-mediated ISG15 conjugation restricts dengue virus 2 replication. Biochemical and biophysical research communications 448, 95-100

110. St John, A. L., Rathore, A. P., Raghavan, B., Ng, M. L., and Abraham, S. N. (2013) Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage. eLife 2, e00481

111. Syenina, A., Jagaraj, C. J., Aman, S. A., Sridharan, A., and St John, A. L. (2015) Dengue vascular leakage is augmented by mast cell degranulation mediated by immunoglobulin Fcgamma receptors. eLife 4

112. Gubler, D. J. (1998) Dengue and dengue hemorrhagic fever. Clinical microbiology reviews 11, 480-496

113. Green, S., and Rothman, A. (2006) Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Current opinion in infectious diseases 19, 429-436

114. Srikiatkhachorn, A. (2009) Plasma leakage in dengue haemorrhagic fever. Thrombosis and haemostasis 102, 1042-1049

115. Chaturvedi, U. C., Agarwal, R., Elbishbishi, E. A., and Mustafa, A. S. (2000) Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS immunology and medical microbiology 28, 183-188

116. Verhelst, J., Hulpiau, P., and Saelens, X. (2013) Mx proteins: antiviral gatekeepers that restrain the uninvited. Microbiology and molecular biology reviews : MMBR 77, 551-566

117. Fitzgerald, K. A. (2011) The interferon inducible gene: Viperin. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 31, 131-135

118. Zhao, C., Collins, M. N., Hsiang, T. Y., and Krug, R. M. (2013) Interferon-induced ISG15 pathway: an ongoing virus-host battle. Trends in microbiology 21, 181-186

119. Elkhateeb, E., Tag-El-Din-Hassan, H. T., Sasaki, N., Torigoe, D., Morimatsu, M., and Agui, T. (2016) The role of mouse 2',5'-oligoadenylate synthetase 1 paralogs. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 45, 393-401

120. Takeda, S., Takeshita, M., Kikuchi, Y., Dashnyam, B., Kawahara, S., Yoshida, H., Watanabe, W., Muguruma, M., and Kurokawa, M. (2011) Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. International immunopharmacology 11, 1976-1983

121. Wakabayashi, H., Nariai, C., Takemura, F., Nakao, W., and Fujiwara, D. (2008) Dietary supplementation with lactic acid bacteria attenuates the development of atopic-dermatitis-like skin lesions in NC/Nga mice in a strain-dependent manner. International archives of allergy and immunology 145, 141-151

122. Jounai, K., Sugimura, T., Morita, Y., Ohshio, K., and Fujiwara, D. (2018) Administration of Lactococcus lactis strain Plasma induces maturation of plasmacytoid dendritic cells and protection from rotavirus infection in suckling mice. International immunopharmacology 56, 205-211

123. Giovannini, M., Agostoni, C., Riva, E., Salvini, F., Ruscitto, A., Zuccotti, G. V., and Radaelli, G. (2007) A randomized prospective double blind controlled trial on effects of long-term consumption of fermented milk containing Lactobacillus casei in pre- school children with allergic asthma and/or rhinitis. Pediatric research 62, 215-220

124. Zocco, M. A., dal Verme, L. Z., Cremonini, F., Piscaglia, A. C., Nista, E. C., Candelli, M., Novi, M., Rigante, D., Cazzato, I. A., Ojetti, V., Armuzzi, A., Gasbarrini, G., and Gasbarrini, A. (2006) Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis. Alimentary pharmacology & therapeutics 23, 1567-1574

125. Vaghef-Mehrabany, E., Alipour, B., Homayouni-Rad, A., Sharif, S. K., Asghari- Jafarabadi, M., and Zavvari, S. (2014) Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition (Burbank, Los Angeles County, Calif.) 30, 430-435

126. Gross, C. J., Mishra, R., Schneider, K. S., Medard, G., Wettmarshausen, J., Dittlein, D. C., Shi, H., Gorka, O., Koenig, P. A., Fromm, S., Magnani, G., Cikovic, T., Hartjes, L., Smollich, J., Robertson, A. A. B., Cooper, M. A., Schmidt-Supprian, M., Schuster, M., Schroder, K., Broz, P., Traidl-Hoffmann, C., Beutler, B., Kuster, B., Ruland, J., Schneider, S., Perocchi, F., and Gross, O. (2016) K(+) Efflux-Independent NLRP3 Inflammasome Activation by Small Molecules Targeting Mitochondria. Immunity 45, 761-773

127. Gurung, P., Li, B., Subbarao Malireddi, R. K., Lamkanfi, M., Geiger, T. L., and Kanneganti, T. D. (2015) Chronic TLR Stimulation Controls NLRP3 Inflammasome Activation through IL-10 Mediated Regulation of NLRP3 Expression and Caspase-8 Activation. Scientific reports 5, 14488

128. Yao, Y., Vent-Schmidt, J., McGeough, M. D., Wong, M., Hoffman, H. M., Steiner, T. S., and Levings, M. K. (2015) Tr1 Cells, but Not Foxp3+ Regulatory T Cells, Suppress NLRP3 Inflammasome Activation via an IL-10-Dependent Mechanism. Journal of immunology 195, 488-497

129. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S., and Medzhitov, R. (2017) Anti- inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513-519

130. Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M. T., Brickey, W. J., and Ting, J. P. (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature immunology 12, 408-415

131. Yang, G., Lee, H. E., and Lee, J. Y. (2016) A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet. Scientific reports 6, 24399

132. Hotamisligil, G. S. (2006) Inflammation and metabolic disorders. Nature 444, 860- 867

133. Multhoff, G., Molls, M., and Radons, J. (2011) Chronic inflammation in cancer development. Frontiers in immunology 2, 98

134. Amor, S., Puentes, F., Baker, D., and van der Valk, P. (2010) Inflammation in neurodegenerative diseases. Immunology 129, 154-169

135. Zhou, R., Yazdi, A. S., Menu, P., and Tschopp, J. (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225

136. Zhong, Z., Liang, S., Sanchez-Lopez, E., He, F., Shalapour, S., Lin, X. J., Wong, J., Ding, S., Seki, E., Schnabl, B., Hevener, A. L., Greenberg, H. B., Kisseleva, T., and Karin, M. (2018) New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198-203

137. Franchi, L., Eigenbrod, T., and Nunez, G. (2009) Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. Journal of immunology 183, 792-796

138. McGeough, M. D., Wree, A., Inzaugarat, M. E., Haimovich, A., Johnson, C. D., Pena, C. A., Goldbach-Mansky, R., Broderick, L., Feldstein, A. E., and Hoffman, H. M. (2017) TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. The Journal of clinical investigation 127, 4488-4497

139. Alvarez, S., and Munoz-Fernandez, M. A. (2013) TNF-Alpha may mediate inflammasome activation in the absence of bacterial infection in more than one way. PloS one 8, e71477

140. Murray, P. J. (2005) The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proceedings of the National Academy of Sciences of the United States of America 102, 8686-8691

141. Smallie, T., Ricchetti, G., Horwood, N. J., Feldmann, M., Clark, A. R., and Williams, L. M. (2010) IL-10 inhibits transcription elongation of the human TNF gene in primary macrophages. The Journal of experimental medicine 207, 2081-2088

142. Girardin, S. E., Boneca, I. G., Viala, J., Chamaillard, M., Labigne, A., Thomas, G., Philpott, D. J., and Sansonetti, P. J. (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. The Journal of biological chemistry 278, 8869-8872

143. Ogura, Y., Inohara, N., Benito, A., Chen, F. F., Yamaoka, S., and Nunez, G. (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. The Journal of biological chemistry 276, 4812-4818

144. Mo, J., Boyle, J. P., Howard, C. B., Monie, T. P., Davis, B. K., and Duncan, J. A. (2012) Pathogen sensing by nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is mediated by direct binding to muramyl dipeptide and ATP. The Journal of biological chemistry 287, 23057-23067

145. Deshmukh, H. S., Hamburger, J. B., Ahn, S. H., McCafferty, D. G., Yang, S. R., and Fowler, V. G., Jr. (2009) Critical role of NOD2 in regulating the immune response to Staphylococcus aureus. Infection and immunity 77, 1376-1382

146. Davis, K. M., Nakamura, S., and Weiser, J. N. (2011) Nod2 sensing of lysozyme- digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice. The Journal of clinical investigation 121, 3666- 3676

147. Nakamura, N., Lill, J. R., Phung, Q., Jiang, Z., Bakalarski, C., de Maziere, A., Klumperman, J., Schlatter, M., Delamarre, L., and Mellman, I. (2014) Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509, 240- 244

148. Masters, S. L., Dunne, A., Subramanian, S. L., Hull, R. L., Tannahill, G. M., Sharp, F. A., Becker, C., Franchi, L., Yoshihara, E., Chen, Z., Mullooly, N., Mielke, L. A., Harris, J., Coll, R. C., Mills, K. H., Mok, K. H., Newsholme, P., Nunez, G., Yodoi, J., Kahn, S. E., Lavelle, E. C., and O'Neill, L. A. (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL- 1beta in type 2 diabetes. Nature immunology 11, 897-904

149. Spranger, J., Kroke, A., Mohlig, M., Hoffmann, K., Bergmann, M. M., Ristow, M., Boeing, H., and Pfeiffer, A. F. (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52, 812-817

150. Herder, C., Brunner, E. J., Rathmann, W., Strassburger, K., Tabak, A. G., Schloot, N. C., and Witte, D. R. (2009) Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: the Whitehall II study. Diabetes care 32, 421-423

151. Fulop, T., Larbi, A., Dupuis, G., Le Page, A., Frost, E. H., Cohen, A. A., Witkowski, J. M., and Franceschi, C. (2017) Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Frontiers in immunology 8, 1960

152. Maue, A. C., Yager, E. J., Swain, S. L., Woodland, D. L., Blackman, M. A., and Haynes, L. (2009) T-cell immunosenescence: lessons learned from mouse models of aging. Trends in immunology 30, 301-305

153. Thevaranjan, N., Puchta, A., Schulz, C., Naidoo, A., Szamosi, J. C., Verschoor, C. P., Loukov, D., Schenck, L. P., Jury, J., Foley, K. P., Schertzer, J. D., Larche, M. J., Davidson, D. J., Verdu, E. F., Surette, M. G., and Bowdish, D. M. E. (2017) Age- Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction. Cell host & microbe 21, 455-466 e454

154. Matsumoto, M., Kurihara, S., Kibe, R., Ashida, H., and Benno, Y. (2011) Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PloS one 6, e23652

155. Chen, K., Shanmugam, N. K., Pazos, M. A., Hurley, B. P., and Cherayil, B. J. (2016) Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability. PloS one 11, e0160937

156. Sugimura, T., Takahashi, H., Jounai, K., Ohshio, K., Kanayama, M., Tazumi, K., Tanihata, Y., Miura, Y., Fujiwara, D., and Yamamoto, N. (2015) Effects of oral intake of plasmacytoid dendritic cells-stimulative lactic acid bacterial strain on pathogenesis of influenza-like illness and immunological response to influenza virus. The British journal of nutrition 114, 727-733

157. Komano, Y., Shimada, K., Naito, H., Fukao, K., Ishihara, Y., Fujii, T., Kokubo, T., and Daida, H. (2018) Efficacy of heat-killed Lactococcus lactis JCM 5805 on immunity and fatigue during consecutive high intensity exercise in male athletes: a randomized, placebo-controlled, double-blinded trial. Journal of the International Society of Sports Nutrition 15, 39

158. Yan, Y., Jiang, W., Spinetti, T., Tardivel, A., Castillo, R., Bourquin, C., Guarda, G., Tian, Z., Tschopp, J., and Zhou, R. (2013) Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38, 1154-1163

159. Yin, H., Guo, Q., Li, X., Tang, T., Li, C., Wang, H., Sun, Y., Feng, Q., Ma, C., Gao, C., Yi, F., and Peng, J. (2018) Curcumin Suppresses IL-1β Secretion and Prevents Inflammation through Inhibition of the NLRP3 Inflammasome. Journal of immunology 200, 2835-2846

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る