リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「<Laboratory for Complex Energy Processes> Self-Assembly Science Research Section」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Self-Assembly Science Research Section

Rajendran, A. 京都大学

2023.03

概要

In recent years, DNA origami has emerged as a
novel technique for constructing materials ranging
from nano to micrometer scale, with sub-nanometer
addressability.1 This technique has been utilized in
various applications, including chemical, biological,
and materials science. DNA origami has also been
used for organizing enzyme cascades, and studies
have shown that it can enhance the efficiency and
rate of sequential reactions.2 However, the use of
DNA origami for templating biomass-related enzymes is hindered by their poor stability under various conditions. For example, origami materials tend
to melt around 50°C when subjected to thermal
treatments.3,4,5 Furthermore, origami materials such
as origami cuboid can break even under mild forces,
which are applied during structural analysis by
force-based methods such as atomic force microscopy (AFM).6 Biomass often undergoes chemical pretreatments using strong acids or bases to break down
the lignin. The biomass product contains several
carboxylic acids with a pH of 2 to 2.5. However, origami materials are stable only between pH 4.5-10 but
denature at a lower pH. The samples can be stored in
pure water for several applications.8 However, the
triangular origami exhibits several defective sites in
pure water. Additionally, the origami undergoes digestion against nucleases such as DNase I, which is
the most abundant nuclease in blood and plasma, either in vitro or in cell culture medium, and T7 endonuclease I. Most origami synthesis buffers contain
5-20 mM Mg2+, as origami cannot be folded without
Mg2+. However, when the folded origami is exchanged into an Mg2+-free buffer, its structural integrity changes depending on its super/globular structure
and buffer composition. For example, the 6-helix
bundle retains its folded structure when exchanged
into Tris, Tris-acetic acid-EDTA (TAE), and phosphate buffers, while the 24-helix bundle remains intact only in Tris buffer. Similar results were observed
for a tubular origami, which retained its folded
structure when exchanged into the crystallization
buffers of various proteins, such as HEPES, PEPES,
and 2-(N-morpholino)ethanesulfonic acid (MES). ...

参考文献

1. P. W. K. Rothemund, Nature 2006, 440, 297-302.

2. A. Rajendran, E. Nakata, S. Nakano, T. Morii,

ChemBioChem 2017, 18, 696-716.

3. Rajendran et al., J. Am. Chem. Soc. 2011, 133,

14488-14491.

4. S. Ramakrishnan, H. Ijas, V. Linko, A. Keller, Compu.

Struct. Biotechnol. J. 2018, 16, 342-349.

5. H. Bila, E. E. Kurisinkal, M. M. C. Bastings, Biomater.

Sci. 2019, 7, 532-541.

6. A. Rajendran, M. Endo, H. Sugiyama, Chem. Rev., 2014,

114, 1493-1520.

7. T. Gerling, M. Kube, B. Kick, H. Dietz, Sci. Adv. 2018,

4, eaau1157.

8. P. O’Neill, P. W. K. Rothemund, D. K. Fygenson, Nano

Lett., 2006, 6, 1379-1383.

9. A. Rajendran, K. Krishnamurthy, A. Giridasappa, E.

Nakata, T. Morii, Nucleic Acids Res. 2021, 49, 7884-7900.

10. M. Endo, Y. Katsuda, K. Hidaka, H. Sugiyama, J. Am.

Chem. Soc., 2010, 132, 1592-1597.

11. T. A. Ngo, E. Nakata, M. Saimura, T. Morii, J. Am.

Chem. Soc., 2016, 138, 3012-3021.

12. E. Nakata, F. F. Liew, C. Uwatoko, S. Kiyonaka, Y.

Mori, Y. Katsuda, M. Endo, H. Sugiyama, T. Morii, Angew.

Chem. Int. Ed., 2012, 51, 2421-2424.

– 92 –

Collaboration Works

Presentations

Rajendran Arivazhagan,Visvesvaraya Technological

University(インド),Stabilization of DNA nanomaterials by enzymatic and chemical methods

A. Rajendran, K. Krishnamurthy, E. Nakata, T. Morii,

Cosolvent improves the enzymatic ligation of DNA

origami, The 102nd Annual Meeting of the Chemical

Society of Japan, Online, 2022.03.23-26.

Rajendran Arivazhagan,National Institute of Technology,Calicut(インド)

,DNA nanomaterials for

the analysis of single molecular reactions

森井孝,Rajendran Arivazhagan,Vanderbilt University School of Medicine ( ア メ リ カ ),

Topoisomerase 反応の可視化

A. Rajendran, K. Krishnamurthy, E. Nakata, T. Morii,

Efficient ligation of nicks in DNA origami, The 49th

International Symposium on Nucleic Acids Chemistry, Tokyo University of Science, Katsushika Campus,

2022.11.02-04.

森井孝,中田栄司,Rajendran Arivazhagan,Ewha

Womans University(大韓民国)

,小分子による酵

素機構の解明

Financial Support

1. Grant-in-Aid for Scientific Research

Rajendran Arivazhagan, Scientific Research (C),

Retroviral integration into topologically-interlocked

DNAs to probe the role of DNA structure and screen

viral inhibitors, FY2021-FY2023

2. Others

Chuaychob, Surachada, (公財)ヒロセ財団, トリ

プレットリピート病の原因となるRNAタンパ

ク質凝集体形成機構の解明と創薬スクリーニン

Publications

A. Rajendran, K. Krishnamurthy, S. Park, E. Nakata,

Y. Kwon, T. Morii, Topologically-interlocked minicircles as probes of DNA topology and DNA-protein

interactions, Chem. Eur. J., 2022, e202200108.

A. Rajendran, K. Krishnamurthy, S. Park, E. Nakata,

Y. Kwon, T. Morii, Journal front cover, Chem. Eur. J.,

2022, e202200838.

A. Rajendran, K. Krishnamurthy, S. Park, E. Nakata,

Y. Kwon, T. Morii, Cover profile, Chem. Eur. J.,

2022, e202200839.

A. Joseph, A. Rajendran, A. Karithikeyan, B. G. Nair,

Implantable microfluidic device: An epoch of technology, Curr. Pharm. Des., 2022, 28, 679-689.

A. Rajendran, S. Zhang, T. Morii, Functional nucleic

acid-protein complexes: Application to fluorescent

ribonucleopeptide sensors, Handbook of Chemical

Biology of Nucleic Acids, 2022.

– 93 –

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る