リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Futile Metabolic Cycle of Fatty Acyl Coenzyme A (Acyl-CoA) Hydrolysis and Resynthesis in Corynebacterium glutamicum and Its Disruption Leading to Fatty Acid Production」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Futile Metabolic Cycle of Fatty Acyl Coenzyme A (Acyl-CoA) Hydrolysis and Resynthesis in Corynebacterium glutamicum and Its Disruption Leading to Fatty Acid Production

Ikeda, Masato Takahashi, Keisuke Ohtake, Tatsunori Imoto, Ryosuke Kawakami, Haruka Hayashi, Mikiro Takeno, Seiki 信州大学 DOI:33310719

2023.02.07

概要

Fatty acyl coenzyme A (acyl-CoA) thioesterase (Tes) and acyl-CoA synthetase (FadD) catalyze opposing reactions between acyl-CoAs and free fatty acids. Within theIMPORTANCE The industrial amino acid producer Corynebacterium glutamicum has evolved into a potential workhorse for fatty acid production. In this organism, we obtained evidence showing the presence of a unique mechanism of lipid homeostasis, namely, formation of a futile cycle of acyl-CoA hydrolysis and resynthesis mediated by acyl-CoA thioesterase (Tes) and acyl-CoA synthetase (FadD), respectively. The biological role of the coupling of Tes and FadD would be to supply free fatty acids for synthesis of the outer layer components mycolic acids and to recycle their excess to acyl-CoAs for membrane lipid synthesis. We further demonstrated that engineering of the cycle in a high-fatty-acid producer led to dramatically improved production, which provides a useful engineering strategy for fatty acid production in this industrially important microorganism. genome of Corynebacterium glutamicum, several candidate genes for each enzyme are present, although their functions remain unknown. Modified expression of the candidate genes in the fatty acid producer WT Delta fasR led to identification of one tes gene (tesA) and two fadD genes (fadD5 and fadD15), which functioned positively and negatively in fatty acid production, respectively. Genetic analysis showed that fadD5 and fadD15 are responsible for utilization of exogenous fatty acids and that tesA plays a role in supplying fatty acids for synthesis of the outer layer components mycolic acids. Enzyme assays and expression analysis revealed that tesA, fadD5, and fadD15 were coexpressed to create a cyclic route between acyl-CoAs and fatty acids. When fadD5 or fadD15 was disrupted in wild-type C. glutamicum, both disruptants excreted fatty acids during growth. Double disruption of these genes resulted in a synergistic increase in production. Additional disruption of tesA revealed a canceling effect on production. These results indicate that the FadDs normally shunt the surplus of TesA-generated fatty acids back to acyl-CoAs for lipid biosynthesis and that interception of this shunt provokes cells to overproduce fatty acids. When this strategy was applied to a high-fatty-acid producer, the resulting fadD-disrupted and tesA-amplified strain exhibited a 72% yield increase relative to its parent and produced fatty acids, which consisted mainly of oleic acid, palmitic acid, and stearic acid, on the gram scale per liter from 1% glucose.

この論文で使われている画像

参考文献

1. Cho IJ, Choi KR, Lee SY. 2020. Microbial production of fatty acids and de- rivative chemicals. Curr Opin Biotechnol 65:129–141. https://doi.org/10 .1016/j.copbio.2020.02.006.

2. Beopoulos A, Nicaud JM, Gaillardin C. 2011. An overview of lipid metabo- lism in yeasts and its impact on biological processes. Appl Microbiol Bio- technol 90:1193–1206. https://doi.org/10.1007/s00253-011-3212-8.

3. Sakuradani E, Ando A, Shimizu S, Ogawa J. 2013. Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4. J Biosci Bioeng 116:417–422. https://doi.org/10 .1016/j.jbiosc.2013.04.008.

4. Han SF, Jin WB, Tu RJ, Wu WM. 2015. Biofuel production from microalgae as feedstock: current status and potential. Crit Rev Biotechnol 35:255–268. https://doi.org/10.3109/07388551.2013.835301.

5. Cho H, Cronan JE, Jr. 1995. Defective export of a periplasmic enzyme dis- rupts regulation of fatty acid synthesis. J Biol Chem 270:4216–4219. https://doi.org/10.1074/jbc.270.9.4216.

6. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R. 2011. Engineered re- versal of the b-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355–359. https://doi.org/10.1038/nature10333.

7. Lennen RM, Pfleger BF. 2012. Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 30:659–667. https://doi.org/10.1016/j .tibtech.2012.09.006.

8. Yan Q, Pfleger BF. 2020. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 58:35–46. https://doi .org/10.1016/j.ymben.2019.04.009.

9. Ikeda M, Miyamoto A, Mutoh S, Kitano Y, Tajima M, Shirakura D, Takasaki M, Mitsuhashi S, Takeno S. 2013. Development of biotin-prototrophic and -hyperauxotrophic Corynebacterium glutamicum. Appl Environ Microbiol 79:4586–4594. https://doi.org/10.1128/AEM.00828-13.

10. Takeno S, Takasaki M, Urabayashi A, Mimura A, Muramatsu T, Mitsuhashi S, Ikeda M. 2013. Development of fatty acid-producing Corynebacterium glutamicum strains. Appl Environ Microbiol 79:6776–6783. https://doi .org/10.1128/AEM.02003-13.

11. Plassmeier J, Li Y, Rueckert C, Sinskey AJ. 2016. Metabolic engineering Corynebacterium glutamicum to produce triacylglycerols. Metab Eng 33:86–97. https://doi.org/10.1016/j.ymben.2015.11.002.

12. Ikeda M, Nagashima T, Nakamura E, Kato R, Ohshita M, Hayashi M, Takeno S. 2017. In vivo roles of fatty acid biosynthesis enzymes in biosynthesis of biotin and a-lipoic acid in Corynebacterium glutamicum. Appl Environ Microbiol 83:e01322-17. https://doi.org/10.1128/AEM.01322-17.

13. Kogure T, Inui M. 2018. Recent advances in metabolic engineering of Cory- nebacterium glutamicum for bioproduction of value-added aromatic chemi- cals and natural products. Appl Microbiol Biotechnol 102:8685–8705. https://doi.org/10.1007/s00253-018-9289-6.

14. Takeno S, Murata N, Kura M, Takasaki M, Hayashi M, Ikeda M. 2018. The accD3 gene for mycolic acid biosynthesis as a target for improving fatty acid production by fatty acid-producing Corynebacterium glutamicum strains. Appl Microbiol Biotechnol 102:10603–10612. https://doi.org/10 .1007/s00253-018-9395-5.

15. Schweizer E, Hofmann J. 2004. Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68:501–517. https://doi.org/10.1128/MMBR.68.3.501-517.2004.

16. Radmacher E, Alderwick LJ, Besra GS, Brown AK, Gibson KJ, Sahm H, Eggeling L. 2005. Two functional FAS-I type fatty acid synthases in Coryne- bacterium glutamicum. Microbiology (Reading) 151:2421–2427. https:// doi.org/10.1099/mic.0.28012-0.

17. Cronan JE, Jr, Rock CO. 1996. Biosynthesis of membrane lipids, p 612–636. In Neidhardt FC, et al. (ed), Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC.

18. Barzantny H, Brune I, Tauch A. 2012. Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. Int J Cosmet Sci 34:2–11. https://doi.org/10.1111/j.1468-2494 .2011.00669.x.

19. Nickel J, Irzik K, van Ooyen J, Eggeling L. 2010. The TetR-type transcrip- tional regulator FasR of Corynebacterium glutamicum controls genes of lipid synthesis during growth on acetate. Mol Microbiol 78:253–265. https://doi.org/10.1111/j.1365-2958.2010.07337.x.

20. Magnuson K, Jackowski S, Rock CO, Cronan JE, Jr. 1993. Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev 57:522–542. https://doi.org/10.1128/MR.57.3.522-542.1993.

21. Nie L, Ren Y, Schulz H. 2008. Identification and characterization of Esche- richia coli thioesterase III that functions in fatty acid beta-oxidation. Bio- chemistry 47:7744–7751. https://doi.org/10.1021/bi800595f.

22. Cho H, Cronan JE, Jr. 1993. Escherichia coli thioesterase I, molecular clon- ing and sequencing of the structural gene and identification as a periplas- mic enzyme. J Biol Chem 268:9238–9245.

23. Narasimhan ML, Lampi JL, Cronan JE, Jr. 1986. Genetic and biochemical characterization of an Escherichia coli K-12 mutant deficient in acyl-coen- zyme A thioesterase II. J Bacteriol 165:911–917. https://doi.org/10.1128/jb .165.3.911-917.1986.

24. Naggert J, Narasimhan ML, DeVeaux L, Cho H, Randhawa ZI, Cronan JE, Jr, Green BN, Smith S. 1991. Cloning, sequencing, and characterization of Escherichia coli thioesterase II. J Biol Chem 266:11044–11050.

25. Feng Y, Cronan JE. 2009. A new member of the Escherichia coli fad regu- lon: transcriptional regulation of fadM (ybaW). J Bacteriol 191:6320–6328. https://doi.org/10.1128/JB.00835-09.

26. Kameda K, Nunn WD. 1981. Purification and characterization of acyl coen- zyme A synthetase from Escherichia coli. J Biol Chem 256:5702–5707.

27. Morgan-Kiss RM, Cronan JE. 2004. The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J Biol Chem 279:37324–37333. https://doi.org/10.1074/jbc.M405233200.

28. Farewell A, Diez AA, DiRusso CC, Nyström T. 1996. Role of the Escherichia coli FadR regulator in stasis survival and growth phase-dependent expres- sion of the uspA, fad, and fab genes. J Bacteriol 178:6443–6450. https:// doi.org/10.1128/jb.178.22.6443-6450.1996.

29. Black PN, DiRusso CC. 2003. Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiol Mol Biol Rev 67:454–472. https://doi.org/10.1128/mmbr.67.3 .454-472.2003.

30. Portevin D, de Sousa-D'Auria C, Montrozier H, Houssin C, Stella A, Lanéelle M-A, Bardou F, Guilhot C, Daffé M. 2005. The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth. J Biol Chem 280:8862–8874. https://doi.org/10.1074/jbc.M408578200.

31. Okumura S, Tsugawa R, Tsunoda T, Motozaki S. 1962. Studies on the L- glutamic acid fermentation. Part II: activities of the various pelargonic acid compounds to promote the fermentation. J Agric Chem Soc Japan 36:204–211. https://doi.org/10.1271/nogeikagaku1924.36.204.

32. Pech-Canul Á, Nogales J, Miranda-Molina A, Álvarez L, Geiger O, Soto MJ, López-Lara IM. 2011. FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol 193:6295–6304. https:// doi.org/10.1128/JB.05450-11.

33. Michinaka Y, Shimauchi T, Aki T, Nakajima T, Kawamoto S, Shigeta S, Suzuki O, Ono K. 2003. Extracellular secretion of free fatty acids by dis- ruption of a fatty acyl-CoA synthetase gene in Saccharomyces cerevi- siae. J Biosci Bioeng 95:435–440. https://doi.org/10.1016/s1389-1723 (03)80041-5.

34. Scharnewski M, Pongdontri P, Mora G, Hoppert M, Fulda M. 2008. Mutants of Saccharomyces cerevisiae deficient in acyl-CoA synthetases secrete fatty acids due to interrupted fatty acid recycling. FEBS J 275:2765–2778. https://doi.org/10.1111/j.1742-4658.2008.06417.x.

35. Leber C, Polson B, Fernandez-Moya R, Da Silva NA. 2015. Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae. Metab Eng 28:54–62. https://doi.org/10.1016/j .ymben.2014.11.006.

36. Ikeda M, Takeno S. 2020. Recent advances in amino acid production, p 107–147. In Inui M, Toyoda K (ed), Corynebacterium glutamicum. Microbi- ology monographs, vol 23. Springer, Cham, Switzerland.

37. Mitsuhashi S, Ohnishi J, Hayashi M, Ikeda M. 2004. A gene homologous to b-type carbonic anhydrase is essential for the growth of Corynebacterium glutamicum under atmospheric conditions. Appl Microbiol Biotechnol 63:592–601. https://doi.org/10.1007/s00253-003-1402-8.

38. Martín JF, Barreiro C, González-Lavado E, Barriuso M. 2003. Ribosomal RNA and ribosomal proteins in corynebacteria. J Biotechnol 104:41–53. https://doi.org/10.1016/s0168-1656(03)00160-3.

39. Ikeda M, Nakagawa S. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Bio- technol 62:99–109. https://doi.org/10.1007/s00253-003-1328-1.

40. Takeno S, Ohnishi J, Komatsu T, Masaki T, Sen K, Ikeda M. 2007. Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum. Appl Microbiol Biotechnol 75:1173–1182. https://doi.org/10.1007/s00253-007-0926-8.

41. Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

42. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M. 2002. A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223. https://doi.org/10.1007/s00253 -001-0883-6.

43. Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L. 2006. Characterization of myo-inositol utilization by Corynebacterium glu- tamicum: the stimulon, identification of transporters, and influence on L- lysine formation. J Bacteriol 188:8054–8061. https://doi.org/10.1128/JB .00935-06.

44. Barnes EM, Jr. 1975. Long-chain fatty acyl thioesterase I and II from Esche- richia coli. Methods Enzymol 35:102–109. https://doi.org/10.1016/0076 -6879(75)35144-6.

45. Ichihara K, Shibasaki Y. 1991. An enzyme-coupled assay for acyl-CoA syn- thetase. J Lipid Res 32:1709–1712.

46. Hayashi M, Mizoguchi H, Shiraishi N, Obayashi M, Nakagawa S, Imai J, Watanabe S, Ota T, Ikeda M. 2002. Transcriptome analysis of acetate me- tabolism in Corynebacterium glutamicum using a newly developed meta- bolic array. Biosci Biotechnol Biochem 66:1337–1344. https://doi.org/10 .1271/bbb.66.1337.

47. Kind S, Kreye S, Wittmann C. 2011. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopen- tane in Corynebacterium glutamicum. Metab Eng 13:617–627. https://doi .org/10.1016/j.ymben.2011.07.006.

48. Katayama S, Kukita T, Ishikawa E, Nakashima S, Masuda S, Kanda T, Akiyama H, Teshima R, Nakamura S. 2013. Apple polyphenols suppress antigen presentation of ovalbumin by THP-1-derived dendritic cells. Food Chem 138:757–761. https://doi.org/10.1016/j.foodchem.2012.10.076.

49. Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the com- parative CT method. Nat Protoc 3:1101–1108. https://doi.org/10.1038/ nprot.2008.73.

50. Takeno S, Hori K, Ohtani S, Mimura A, Mitsuhashi S, Ikeda M. 2016. L-Ly- sine production independent of the oxidative pentose phosphate path- way by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Metab Eng 37:1–10. https://doi.org/10.1016/j.ymben.2016.03.007.

51. Kawaguchi A, Okuda S. 1977. Fatty acid synthetase from Brevibacterium ammoniagenes: formation of monounsaturated fatty acids by a multien- zyme complex. Proc Natl Acad Sci U S A 74:3180–3183. https://doi.org/10 .1073/pnas.74.8.3180.

52. Erfle JD. 1973. Acetyl-CoA and propionyl-CoA carboxylation by Mycobac- terium phlei: partial purification and some properties of the enzyme. Bio- chim Biophys Acta 316:143–155. https://doi.org/10.1016/0005-2760(73) 90004-0.

53. Morishima N, Ikai A. 1987. Active site organization of bacterial type I fatty acid synthetase. J Biochem 102:1451–1457. https://doi.org/10.1093/oxfordjournals .jbchem.a122191.

54. Irzik K, van Ooyen J, Gätgens J, Krumbach K, Bott M, Eggeling L. 2014. Acyl- CoA sensing by FasR to adjust fatty acid synthesis in Corynebacterium gluta- micum. J Biotechnol 192:96–101. https://doi.org/10.1016/j.jbiotec.2014.10 .031.

参考文献をもっと見る