リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Stabilization mechanism of the feedback instability with height-resolved ionosphere and Alfvén resonator models」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Stabilization mechanism of the feedback instability with height-resolved ionosphere and Alfvén resonator models

Watanabe, T.-H. Hiwatari, J. Maeyama, S. 名古屋大学

2023.04.25

概要

Feedback instability in the magnetosphere–ionosphere (M–I) coupling has been proposed as a possible physics mechanism of spontaneous growth of auroral arcs,1,2 where the shear Alfven wave propagating
along a field line in the magnetosphere resonantly interacts with the
density wave driven by the ionospheric current through a local circuit
closed with the field aligned current. Since the pioneering works, a variety of theoretical and numerical studies have been carried out in the
last four decades (see, for example, references in a recent article3).
The feedback interaction of the magnetosphere and the ionosphere in a low-frequency range (0:01Hz) close to the field line resonance elucidates the auroral arc formation and dynamics in the
terrestrial M–I coupling. Spatio-temporal scales of the feedback instability are relevant to those of quiet auroral arcs with a latitudinal width
of 10 km and a drift velocity of 100 m/s (for example, see discussions by Sato2). ...

この論文で使われている画像

参考文献

G. Atkinson, “Auroral arcs: Result of the interaction of a dynamic magnetosphere with the ionosphere,” J. Geophys. Res. 75, 4746–4755, https://doi.org/

10.1029/JA075i025p04746 (1970).

T. Sato, “A theory of quiet auroral arcs,” J. Geophys. Res.: Space Phys. 83,

1042–1048, https://doi.org/10.1029/JA083iA03p01042 (1978).

J. E. Borovsky, J. Birn, M. M. Echim, S. Fujita, R. L. Lysak, D. J. Knudsen, O.

Marghitu, A. Otto, T.-H. Watanabe, and T. Tanaka, “Quiescent discrete auroral arcs: A review of magnetospheric generator mechanisms,” Space Sci. Rev.

216, 1–39 (2020).

T.-H. Watanabe, “Feedback instability in the magnetosphere-ionosphere coupling system: Revisited,” Phys. Plasmas 17, 022904 (2010).

T.-H. Watanabe, H. Kurata, and S. Maeyama, “Generation of auroral turbulence through the magnetosphere–ionosphere coupling,” New J. Phys. 18,

125010 (2016).

V. Trakhtengertz and A. Feldstein, “Quiet auroral arcs: Ionosphere effect of

magnetospheric convection stratification,” Planet. Space Sci. 32, 127–134

(1984).

R. L. Lysak, “Feedback instability of the ionospheric resonant cavity,”

J. Geophys. Res.: Space Phys. 96, 1553–1568, https://doi.org/10.1029/

90JA02154 (1991).

S. Poliakov and V. Rapoport, “The ionospheric Alfven resonator,” Geomagn.

Aeronomy 21, 816–822 (1981).

D. Pokhotelov, W. Lotko, and A. V. Streltsov, “Harmonic structure of field line

eigenmodes generated by ionospheric feedback instability,” J. Geophys. Res.:

Space Phys. 107, SMP 14-1–SMP 14-8, https://doi.org/10.1029/2001JA000134

(2002).

10

A. V. Streltsov and W. Lotko, “Multiscale electrodynamics of the ionospheremagnetosphere system,” J. Geophys. Res.: Space Phys. 109, 9214, https://

doi.org/10.1029/2004JA010457 (2004).

11

Y. Hiraki and T. Watanabe, “Feedback instability analysis for dipole

configuration with ionospheric and magnetospheric cavities,” J. Geophys.

Res.: Space Phys. 116, A11220, https://doi.org/10.1029/2011JA016721

(2011).

12

Y. Hiraki and T.-H. Watanabe, “Hybrid Alfven resonant mode generation in

the magnetosphere-ionosphere coupling system,” Phys. Plasmas 19, 102904

(2012).

13

D. Sydorenko and R. Rankin, “The stabilizing effect of collision-induced

velocity shear on the ionospheric feedback instability in earth’s magnetosphere,” Geophys. Res. Lett. 44, 6534–6542, https://doi.org/10.1002/

2017GL073415 (2017).

30, 042903-7

18 October 2023 06:44:06

^ > 3:3 with ^ in ¼ 3. In the case of ^ in ¼ 5,

ReðzÞ ’ 1 for ReðxÞ

where the high-frequency modes are completely stabilized due to the

strong inhomogeneity, the frequency range providing ReðzÞ ’ 1

^ > 2:5. This is because

extends to the lower frequency regime of ReðxÞ

the real part of the denominator in the integral in Eq. (20) vanishes at

a lower frequency for the stronger inhomogeneity with the smaller

minimum of l

^ P ðzÞ [see Eqs. (7) and (14)].

^ is obtained in Eq. (21), one

Once the functional form of zðxÞ

^ including the

can solve the dispersion relation in Eq. (20) with zðxÞ,

effects of ionospheric inhomogeneity. Namely, the set of Eqs. (12) and

(13) with  in ¼ 0 and Rrec ¼ 0 is solved for the magnetosphere but

with the height-averaged ionosphere model using Eqs. (20) and (21).

Figure 6 displays the real and imaginary parts of the eigenfrequency

given in Eq. (12) with lP ¼ Rrec ¼ 0 and F ¼ 1 coupled with Eqs.

(13), (20), and (21), where the results agree fairly well with those in

Figs. 2(c)–2(h). Thus, it is concluded that the stabilization of highfrequency modes in the case with the ionospheric inhomogeneity is

attributed to changes of the effective impedance ð1  zÞ.

The present results showing stabilization of the feedback instability for the high-frequency modes related to IAR are qualitatively consistent with the simulation results in the earlier work.13 Here, it is also

noteworthy that stabilization of the low-frequency modes was not

shown by the numerical simulation.13 In contrast, the present study

verifies that the low-frequency modes remain unstable in the M–I coupling model, which is explained in terms of the frequency dependence

of the effective impedance (1  z).

ARTICLE

Physics of Plasmas

14

A. V. Streltsov and E. V. Mishin, “On the existence of ionospheric feedback

instability in the earth’s magnetosphere-ionosphere system,” J. Geophys. Res.:

Space Phys. 123, 8951–8957, https://doi.org/10.1029/2018JA025942 (2018).

15

T.-H. Watanabe and S. Maeyama, “Unstable eigenmodes of the feedback instability with collision-induced velocity shear,” Geophys. Res. Lett. 45,

10043–10049, https://doi.org/10.1002/2017GL073415 (2018).

ARTICLE

scitation.org/journal/php

16

A. Potapov, T. Polyushkina, B. Dovbnya, B. Tsegmed, and R. Rakhmatulin,

“Emissions of ionospheric Alfven resonator and ionospheric conditions,”

J. Atmos. Sol.-Terrestrial Phys. 119, 91–101 (2014).

17

T.-H. Watanabe (2022). “A dispersion solver for the feedback instability with

inhomogeneous ionosphere and ionospheric Alfven resonator,” Github. https://

doi.org/10.5281/zenodo.7023952

18 October 2023 06:44:06

Phys. Plasmas 30, 042903 (2023); doi: 10.1063/5.0139084

Published under an exclusive license by AIP Publishing

30, 042903-8

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る