リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「大麦焼酎粕を原料として精製および生産される生理機能成分に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

大麦焼酎粕を原料として精製および生産される生理機能成分に関する研究

上原, 絵理子 UEHARA, Eriko ウエハラ, エリコ 九州大学

2023.09.25

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

大麦焼酎粕を原料として精製および生産される生理
機能成分に関する研究
上原, 絵理子

https://hdl.handle.net/2324/7157411
出版情報:Kyushu University, 2023, 博士(農学), 論文博士
バージョン:
権利関係:





:上原 絵理子

論文題名

:大麦焼酎粕を原料として精製および生産される生理機能成分に関する研究



:乙

















焼酎は日本の伝統的な蒸留酒である。アルコール発酵したもろみを蒸留した後に残った液体は一
般的に「焼酎粕」と呼ばれるが、我々はその上清画分を「発酵大麦エキス(Fermented Barley Extraction,
FBE)」として製造し、調味料や微生物培養基材として利用している。また、FBE は抗炎症効果およ
び尿酸値低減効果を有することが報告されている。本研究では炎症が発症の一因とされるロコモテ
ィブシンドローム(ロコモ)を抑制する成分と、尿酸値低減効果をもたらす成分の探索および同定を
行った。一方、我々は FBE を培地とした乳酸菌培養によって γ–アミノ酪酸(以下、GABA)を生産
している。GABA を摂取することにより、肌の弾力および筋肉量が維持されることが報告されてい
る。本研究では GABA が肌弾力および筋肉量を維持する作用機序を細胞実験によって明らかにした。
1. FBE に含まれる抗ロコモ成分の同定と細胞および生体に与える影響
マトリックスメタロプロテアーゼ(MMP)-13 はリウマチおよび変形性膝関節症の発症に関与す
る軟骨分解酵素である。そこで、FBE の樹脂処理乾燥物 100 µg/mL もしくは HPLC 分画乾燥物 30-50
µg/mL を含む培地で、ヒト軟骨肉腫細胞 OUMS-27 を培養した。mRNA 測定用細胞は 24 時間、タン
パク測定用細胞は 5 日間培養した。また、試料添加直後、炎症性サイトカインであるインターロイ
キン(IL)-1β 5.5 ng/well を添加した後、MMP-13 の発現に与える影響を検討した。FBE の精製画
分 FBE-P40-5 に含まれるピログルタミルテトラペプチド pEPYP(pyro-Glu-Pro-Tyr-Pro、分子量 486、
分子式 C24H30N4O7)0.1 µg/mL 以上を含む培地で培養した結果、MMP-13 の遺伝子およびタンパク質
の発現が有意に減少した。また、pEPYP を 0.3 µg/mL 以上と IL-6 を 50 ng/well 含む培地でヒト急性
T リンパ芽球性細胞 TALL-1 を培養した結果、抗炎症性サイトカインである IL-10 の遺伝子およびタ
ンパク質の発現が有意に増加した(培養時間は OUMS-27 と同様)。次にリウマチモデルラットに
pEPYP 含有飼料を強制経口投与した。その結果、対照群に比べ、pEPYP 20 mg/kg B.W./day 以上の投
与群おいて、足根部の浮腫スコアおよび血清中の抗Ⅱ型コラーゲン IgG 抗体濃度を低値に抑えた。
病理学的検査では、pEPYP 40 mg/kg B.W./day 投与群において、対照群に比べ、炎症性細胞の浸潤箇
所が少ない個体が見られた。さらに膝関節に痛みや違和感のある健常男女に pEPYP 15 mg/day を 12
週間連続摂取させた結果、プラセボ群と比べ、日本語版変形性膝関節症患者機能評価尺度(Japanese
Knee Osteoarthritis Measure、JKOM)の「痛み・こわばりスコア」の変化量が有意に低下した。以上
の結果から、FBE に含まれる pEPYP は抗ロコモ効果を有することが明らかとなった。
2. FBE に含まれる尿酸値低減成分の同定
尿 酸 排 泄 機 構 の 一 つ で あ る 尿 酸 ト ラ ン ス ポ ー タ ー ATP binding cassette subfamily G member
(ABCG)2 の発現を増加させる成分を探索した。ヒト結腸癌由来細胞 (Caco-2 細胞)に FBE の樹脂
処理乾燥物 2 mg/mL および HPLC 分画乾燥物 0.5-100 µg/mL 含む培地で培養した。mRNA 測定用細
胞は 24 時間、タンパク測定および免疫染色用細胞は 5 日間培養した。FBE の精製画分 FBE-P60-4-6
に含まれるピログルタミルプロリン pEP(pyro-Glu-Pro、分子量 226、分子式 C10H15N2O4)1 µg/mL
以上を含む培地で培養した結果、ABCG2 の遺伝子およびタンパク質の発現が有意に増加した。

3. FBE を培地とした乳酸菌培養によって生産された GABA が皮膚細胞に与える影響
FBE を培地とし、乳酸菌を培養することによって生産された GABA 0.1-10 µg/mL を含む培地で正
常ヒト真皮線維芽細胞 (NHDF)を 24 時間培養した。その結果、1-10 µg/mL の GABA はⅠ型コラー
ゲン(COL1A1)およびエラスチン関連遺伝子の発現を有意に増加させ、コラーゲン分解酵素 MMP-1
の遺伝子の発現を有意に減少させた。さらに 10 µg/mL の GABA を含む培地で 7 日間培養し免疫蛍
光染色を行った結果、エラスチンタンパク質の発現が増加した。つまり、GABA は皮膚細胞による
コラーゲンおよびエラスチンの産生を促進することによって、肌の弾力を維持することが判明した。
4. FBE を培地とした乳酸菌培養によって生産された GABA が筋芽細胞に与える影響
GABA10–100 µg/mL を含む培地で筋芽細胞(C2C12 細胞)を培養し、筋肉量制御関連因子に与え
る影響を検討した。細胞数および mRNA 測定用細胞は 4 日間、タンパク測定用細胞は 5 日間培養し
た。myogenic determination gene number 1(MyoD)は筋管細胞への分化を促進する因子である。
peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)はミトコンドリアのエ
ネルギー産生に関わる因子である。myostain は筋肉量を負に調節する因子である。細胞実験の結果、
100 µg/m 以上の GABA は C2C12 細胞の増殖を有意に増加させた。また、10 µg/m 以上の GABA は
MyoD と PGC-1αの遺伝子およびタンパク質の発現を有意に増加させた。さらに 10 µg/m 以上の
GABA は myostatin の遺伝子およびタンパク質の発現を有意に減少させた。つまり、GABA は筋肉
細胞に直接的に作用し、筋肉量を維持することが判明した。
以上の知見を総合し、FBE は pEPYP および pEP を含有し、それぞれ抗ロコモおよび尿酸値低減
効果を有することを明らかにした。また、GABA が有する肌弾力および筋力維持効果の作用機序を
解明することができた。

この論文で使われている画像

参考文献

1. 林國興. 総説 焼酎粕の飼料利用. 日本暖地畜産学会報, 55, 101–107 (2012)

2. http://www.tres-ltd.jp/biomass/h21/jirei/pdf/46_0_45.pdf

3. 株式会社栄電社. 戦略的基盤技術高度化支援事業(経済産業省)焼酎粕乳酸

発酵液(SPL 液)の飼料・肥料利用について (2021)

4. 塩盛弘一郎, 池田勇人. プロジェクトニッポン 宮崎県 地域課題「焼酎廃

液」に着目 日本初技術を開発した建設会社. 月刊事業構想, 6 (2015)

5. 産経新聞. 崇城大院生らのバイオベンチャー始動

焼酎粕で「光合成細菌」

培養. THE SANKEI NEWS, 2018/5/18

6. Circular Economy Hub. 「焼酎粕」を電池の材料に

廃棄処理を減らす薩摩酒

造の取り組み. Forbes JAPAN, 2021.08.13

7. 塩盛弘一郎. リポート バイオマス燃料製造による焼酎粕処理プロセスの開

発と焼酎バイオエナジー宮崎日南工場の開設―あなぶきグループと宮崎大学

との連携―, 国立研究開発法人科学技術振興機構 産学官連携ジャーナル,

2021 年 9 月 15 日

8. 森村茂. 発酵による食品産業副生物の機能性食品への転換. 温古知新, 47,

61–67 (2010)

9. 池田浩二, 中野隆之, 藤井信ら. 米麹を添加した芋焼酎粕飲料の生理作用. 日

本醸造協会誌, 107, 355–361 (2012)

10. Takaya Y, Furukawa T, Miura S, et al. Antioxidant constituents in distillation residue

of Awamori spirits. J Agric Food Chem, 55, 75–79 (2007)

11. 井口隆文, 川田あゆみ, 有満瞳ら. オバルブミン感作鼻炎マウスに対する大

麦醗酵エキスの効果. 日本食品科学工学会誌, 54, 61–66 (2007)

12. 古水雄志, 朝長由夏, 田上修ら. 焼酎粕有効成分の美白効果に関する基礎研

究. 化学工学論文集, 33, 168–172 (2007)

13. Yokoi H, Aratake T, Nishio S, et al. Chitosan production from shochu distillery

wastewater by funguses. J Ferment Bioeng, 85, 246–249 (1998)

144

14. Yoshimoto M, Kurata-Azuma T, Fujii M, et al. Phenolic Composition and Radical

Scavenging Activity of Sweetpotato-DerivedShochu Distillery By-Products Treated

with Koji. Biosci. Biotechnol. Biochem, 68, 2477–2483 (2004)

15. 外薗英樹. 肝機能改善素材「発酵大麦エキス・アルコケア」~人とお酒の良

い関係づくりを目指して. New Food Industry, 56, 20–26 (2014)

16. 古田吉史, 外薗理佐, 高下秀春ら. 大麦焼酎蒸留粕に含まれる乳酸菌・ビフ

ィズス菌増殖促進因子の探索. 生物工学会誌, 85, 161–166 (2007)

17. 望月聡, 宮本安紀子, 萩原美和子ら. オロチン酸投与によるラット脂肪肝に

対する大麦焼酎粕の抑制効果. 日本醸造協会誌, 96, 559–563 (2001)

18. Hokazono H, Omori T, Suzuki H, et al. Effects of Fermented Barley Extract on

Antioxidant Status in Mice. Food Sci Technol Res, 15, 599–604 (2009)

19. 植田一馬,Ardyansyah Ardy, 白川仁ら. 発酵大麦エキスは脳卒中易発性高血

圧自然発症ラットの高血圧症を改善する. 日本農芸化学会大会要旨集,2013,

1517 (2013)

20. Maruoka N, Watanabe B, Ando D, et al. Effects of a pyroglutamyl pentapeptide

isolated from fermented barley extract on atopic dermatitis-like skin lesions in

hairless mouse. Biosci Biotechnol Biochem, 84, 1696–1705 (2020)

21. Hokazono H, Omori T and Ono K. Anti-hyperuricemic effect of fermented barley

extract is associated with increased urinary uric acid excretion. Food Sci Technol Res,

16, 295–304 (2010)

22. Hokazono H, Omori T, Yamamoto T, et al. Effects of a Fermented Barley Extract on

subjects with slightly high serum uric acid or mild hyperuricemia. Biosci Biotechnol

Biochem, 74, 828–834 (2010)

23. 外薗英樹,上原絵理子. γ-アミノ酪酸の経口摂取による皮膚状態改善効果. 日

本食品科学工学会誌, 63, 306–311 (2016)

24. Choi WC, Reid SNS, Ryu JK et al. Effects of γ-aminobutyric acid-enriched fermented

sea tangle (Laminaria japonica) on brain derived neurotrophic factor-related muscle

growth and lipolysis in middle aged women. Algae, 31, 1–13 (2016)

145

25. 厚生労働省,生活習慣病予防のための健康情報サイト「健康寿命」

https://www.e-healthnet.mhlw.go.jp/information/dictionary/hale/ya-031.html

26. 厚生労働省,新健康フロンティア戦略賢人会議: 新健康フロンティア戦略.

平成 19 年 4 月 18 日.

27. Nakamura K. A “super-aged” society and the “locomotive syndrome”. J Orthop Sci,

13, 1–2 (2008)

28. 厚生労働省, 平成 25 年 国民生活基礎調査の概況.

https://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa13/

29. 中村耕三. ロコモティブシンドローム(運動器症候群). 日本老年医学会雑

誌, 49, 393–401 (2012)

30. 張英士, 石井隆雄, 徳橋泰明. ロコモシリーズ 1 変形性関節症. 日大医誌,

72,77–80 (2013)

31. Du C, Smith A, Avalos M, et al. Blueberries Improve Pain, Gait Performance, and

Inflammation in Individuals with Symptomatic Knee Osteoarthritis. Nutrients, 11,

290 (2019)

32. 中村洋. 運動器のアンチエイジング研究:運動のアンチエイジング効果. 医

学のあゆみ, 261, 632–637 (2017)

33. Giriwono PE, Shirakawa H, Hokazono H, et al. Fermented Barley Extract

Supplementation Maintained Antioxidative Defense Suppressing

Lipopolysaccharide-Induced Inflammatory Liver Injury in Rats. Biosci Biotechnol

Biochem, 75, 1971–1976 (2011)

34. Drevet S, Gavazzi G, Grange L, et al. Reactive oxygen species and NADPH oxidase

4 involvement in osteoarthritis. Exp Gerontol, 111, 107–117 (2018)

35. Vandenbroucke RE and Libert C. Is there new hope for therapeutic matrix

metalloproteinase inhibition? Nat Rev Drug Discov, 13, 904–927 (2014)

36. Chan CM, Macdonald CD, Litherland GJ, et al. Cytokine-induced MMP13

Expressionin Human Chondrocytes Is DependentonActivating Transcription Factor 3

(ATF3) Regulation. THE JOURNAL OF BIOLOGICAL CHEMISTRY 292, 1625–

146

1636 (2017)

37. 伊藤崇,宇月美和,嶋村正ら. 慢性関節リウマチ血清 関節液中の Matrix

metalloproteinase-13 の動態. Connective tissue, 34, 90 (2002)

38. Ihaka R and Gentleman R. R: A Language for Data Analysis and Graphics. J Comp

Graph Stat, 5, 299–314 (1996)

39. 岩崎由希子, 藤尾圭志, 岡村僚久ら. IL-10 産生制御性 T 細胞の治療応用にむ

けて. 日本臨床免疫学会誌,36, 40–46 (2013)

40. Jüngel A, Ospelt C, Lesch M, et al. Effect of the oral application of a highly selective

MMP-13 inhibitor in three different animal models of rheumatoid arthritis. Ann.

Rheum. 69, 898–902 (2010)

41. Adorisio S, Fierabracci A, Muscari I, et al. Artocarpus tonkinensis Protects Mice

Against Collagen-Induced Arthritis and Decreases Th17 Cell Function. Frontiers in

Pharmacology (Web), 10, 503 (2019)

42. Hsiao HB, Wu JB and Lin WC. Anti-arthritic and anti-inflammatory effects of (-)Epicatechin-3-O-β-d-allopyranoside,

constituent

of

Davallia

formosana.

Phytomedicine, 52, 12–22 (2019)

43. 松元優子, 今永知俊, 川尻龍典ら. 抗 II 型コラーゲン抗体の測定が診断と病

勢評価に有用であった再発性多発性軟骨炎の 1 例. 日呼吸会誌, 40, 45–49

(2002)

44. Ghimire S, Matos C, Caioni M, et al. Indoxyl 3-sulfate inhibits maturation and

activation of human monocyte-derived dendritic cells. Immunobiology, 223, 239–245

(2018)

45. Lorenzetti R, Janowska I, Smulski CR, et al. Abatacept modulates CD80 and CD86

expression and memory formation in human B-cells. J Autoimmun., 101, 145–152

(2019)

46. Choi B, Shin MK, Kim EY, et al. Elevated Neuropeptide Y in Endothelial Dysfunction

Promotes Macrophage Infiltration and Smooth Muscle Foam Cell Formation.

Frontiers in Immunology (Web), 10, 1701 (2019)

147

47. Mei WY, Yu MJ, Yao S, et al. Anti-inflammatory Effects of a Small Molecule GastrinReleasing Peptide Receptor Antagonist on Adjuvant-Induced Rheumatoid Arthritis in

Rats. Chem Pharm Bull, 66, 410–415 (2019)

48. Li YN, Fan ML, Liu HQ, et al. Dihydroartemisinin derivative DC32 inhibits

inflammatory response in osteoarthritic synovium through regulating Nrf2/NF- kB

pathway. International Immunopharmacology, 74, 105701 (2019)

49. 赤居正美. 疾患特異的・患者立脚型変形性膝関節症患者機能評価尺度 ;

JKOM(Japanese Knee Osteoarthritis Measure). 運動療物理療, 16, 55-62 (2005)

50. 腰野富久. OA 膝治療成績判定基準. 日整会誌, 62, 900–902 (1988)

51. 大渕 修一. 厚生労働省 運動器の機能向上マニュアル(改訂版). 平成 21 年

3 月 31 日

52. 濱崎伸明, 糸満盛憲, 須田久美ら. 日本版膝関節機能尺度(JKOM)の重症度に

対する感度の検討. 理学療法, 33, 223 (2006)

53. Jinwei X, Zeyu H, Xijie Y, et al. Clinical implications of macrophage dysfunction in

the development of osteoarthritis of the knee. Cytokine & Growth Factor Reviews, 46,

36–44 (2019)

54. Prado SA, Amaral MV, Pereira ANC, et al. Whole Body Vibration Training on Muscle

Strength and Brain-Derived Neurotrophic Factor Levels in Elderly Woman With Knee

Osteoarthritis: A Randomized Clinical Trial Study. Frontiers in Physiology (Web), 10,

756 (2019)

55. 鹿取信, 馬嶋正隆. 誘導型シクロオキシゲナーゼ―2 の多彩な役割とその選

択的阻害薬の効果. 日薬理誌, 109, 247–258 (1997)

56. Chen J, Si M, Wang Y, et al. Ginsenoside metabolite compound K exerts antiinflammatory

and

analgesic

effects

via

downregulating

COX2.

Inflammopharmacology, 27, 157–166 (2019)

57. Jing R, Ban Y, Xu W, et al. Therapeutic effects of the total lignans from Vitex negundo

seeds on collagen-induced arthritis in rats. Phytomedicine, 58, 152825 (2019)

58. 金景成, 井須豊彦. 脊髄外科研究に用いられるスコアリングシステムおよび

148

その特徴②腰椎疾患の評価システム. Spinal Surgery, 29, 18–25 (2015)

59. Hancock GE, Hepworth T and Wembridge K. Accuracy and reliability of knee

goniometry methods. J Exp Orthop, 19, 46 (2018)

60. Ayabe T, Ohya R and Ano Y. β -lactolin, a whey-derived glycine-threoninetryptophan-tyrosine lactotetrapeptide, improves prefrontal cortex-associated reversal

learning in mice. Biosci Biotechnol Biochem, 84, 1039–1046 (2020)

61. Saito Y, Tanaka A, Node K, et al. Uric acid and cardiovascular disease: a clinical

review. J Cardiol, 78, 51–57 (2021)

62. Kojima S, Matsui K, Hiramitsu S, et al. Febuxostat for cerebral and

cardiorenovascular events prevention study. Eur Heart J, 40, 1778–1786 (2019)

63. Choi HK, Liu S and Curhan G. Intake of purine-rich foods, protein, and dairy products

and relationship to serum levels of uric acid: the Third national health and nutrition

examination survey. Arthritis Rheum, 52, 283–289 (2005)

64. Clebak KT, Morrison A and Croad JR. Gout: rapid evidence review. Am Fam

Physician, 102, 533–538 (2020)

65. Sun BG, Meng J, Xiang T et al. Acupuncture of the five Shu Acupoints in spleen

meridian to lower blood uric acid level. Ann Palliat Med, 3, 22–27 (2014)

66. Eckenstaler R and Benndorf RA. The role of ABCG2 in the pathogenesis of primary

hyperuricemia and gout-an update. Int J Mol Sci, 22, 6678 (2021)

67. Ichida K, Matsuo H, Takada T et al. Decreased extra-renal urate excretion is a

common cause of hyperuricemia. Nat Commun, 3, 764 (2012)

68. Wan S, Fang Y, Yu X, et al. The flavonoid-rich fraction from rhizomes of Smilax

glabra Roxb. ameliorates renal oxidative stress and inflammation in uric acid

nephropathy rats through promoting uric acid excretion. Biomed Pharmacother, 111,

162–168 (2019)

69. Ogura J, Kuwayama K, Takaya A, et al. Intestinal ischemia-reperfusion increases

efflux for uric acid via paracellular route in the intestine, but decreases that via

transcellular route mediated by BCRP. J Pharm Pharm Sci, 15, 295–304 (2012)

149

70. Zhang J, Sun-Waterhouse D, Feng Y, et al. The umami intensity enhancement of

peanut protein isolate hydrolysate and its derived factions and peptides by Maillard

reaction and the analysis of peptide (EP) Maillard products. Food Res Int, 120, 895–

903 (2019).

71. Moore A, Luckett CR and Munafo JP, Jr. Taste-active dipeptides from hydrolyzed

mushroom protein enhance saltiness. J Agric Food Chem, 69, 11947–11959 (2021)

72. Shirako S, Kojima Y, Tomari N, et al. Pyroglutamyl leucine, a peptide in fermented

foods, attenuates dysbiosis by increasing host antimicrobial peptide. NPJ Sci Food, 3,

18 (2019)

73. Kiyono T, Hirooka K, Yamamoto Y, et al. Identification of pyroglutamyl peptides in

Japanese rice wine (Sake): presence of hepatoprotective pyroGlu-Leu. J Agric Food

Chem, 61, 11660–11667 (2013)

74. Gheytanchi E, Naseri M, Karimi‑Busheri F, et al. Morphological and molecular

characteristics of spheroid formation in HT-29 and Caco-2 colorectal cancer cell lines.

Cancer Cell Int, 21, 204 (2021)

75. Yano H, Tamura Y, Kobayashi K, et al. Uric acid transporter ABCG2 is increased in

the intestine of the 5/6 nephrectomy rat model of chronic kidney disease. Clin Exp

Nephrol, 18, 50–55 (2014)

76. Mozner O, Bartos Z, Zambo B, et al. Cellular processing of the ABCG2 transporterpotential effects on gout and drug

metabolism. Cells, 8, 1215 (2019)

77. Ramanathan S, Pooyan S, Stein S, et al. Targeting the sodium-dependent multivitamin

ransporter (SMVT) for improving the oral absorption properties of a retro-inverso tat

nonapeptide. Pharm Res, 18, 950–956 (2001)

78. Sato K, Egashira Y, Ono S, et al. Identification of a Hepatoprotective Peptide in Wheat

Gluten Hydrolysate against d-Galactosamine-Induced Acute Hepatitis in Rats. J.

Agric. Food Chem. 61, 6304–6310 (2013)

79. 古田吉史, 丸岡生行, 中村彰宏ら,大麦焼酎蒸留粕に由来する発酵大麦エキ

スの微生物用培地としての利用,生物工学会誌,87,16–19 (2009)

150

80. 古田吉史, 丸岡生行, 中村彰宏ら,乳酸菌を利用した焼酎蒸留粕の高付加価

値素材への転換プロセスの構築,生物工学会誌,8,114-120 (2010)

81. Erdo SL. Peripheral GABAergic mechanisms. Trends Pharmacol Sci, 6, 205–208

(1985)

82. Hokazono H, Omori T and Ono K. Effects of single and combined administration of

fermented barley extract and g-aminobutyric acid on the development of atopic

dermatitis in NC/Nga mice. Biosci Biotechnol Biochem, 74, 135–139 (2010)

83. Nakamura H, Takishima T, Kometani T, et al. Psychological stress-reducing effect of

chocolate enriched with gamma-aminobutyric acid (GABA) in humans : assessment

of stress using heart rate variability and salivary chromogranin. A Int J Food Sci Nutr,

60, 106–113 (2009)

84. Yamatsu A, Yamashita Y, Maru I, et al. The improvement of sleep by oral intake of

GABA and Apocynum venetum leaf extract. J Nutr Sci Vitaminol, 61, 182–187 (2015)

85. 針谷毅,平尾哲二,勝山雅子ら. アトピー性皮膚炎患者における心身の状態

と皮膚症状の関連性について. アレルギー,49,463–471 (2000)

86. 相生章博,古川福実,心理的ストレスが皮膚防御機能に及ぼす影響-過密スト

レス負荷マウスモデルを用いた検. 和歌山医学,53,113–120 (2002)

87. 佐藤育子,佐々木昌世,早尾弘子ら. 看護師におけるストレスと肌荒れの関

係. 月刊ナーシング,26,98–103 (2006)

88. Gupta MA and Gupta AK. Sleep-wake disorders and dermatology. Clin Dermatol, 31,

118–126 (2013)

89. 吉田和恵. アトピー性皮膚炎の皮膚バリアと表皮樹状細胞,アレルギー,66,

995–1000(2017)

90. 田中浩,岡田富雄. 活性酸素の培養ヒト皮膚線維芽細胞におけるコラーゲン

代謝に及ぼす影響. J Soc Cosmet Chem Jpn, 28, 172–177 (1994)

91. 西田紀貴, 嶋田一夫. コラーゲン結合タンパク質を介した生命プロセスの活

性化機構. 生化学, 80, 483–492 (2008)

92. 富永直樹, 西山敏夫, 林利彦. 皮膚とコラーゲン. 繊維学会誌, 42, 237–242

151

(1986)

93. 飯塚舜介,桑原正憲,内田幸男. 魚うろこ由来コラーゲン過剰摂取の安全性.

米子医誌 J Yonago Med Ass, 68, 64–72 (2017)

94. 深田楓子, 内山太郎, 上田修.コラーゲンペプチド,リンゴンベリーおよび

アムラ果実エキス併用による皮膚状態改善効果. 応用薬理,101,45–52 (2021)

95. 畑隆一郎, 居作和人, 高見沢紳治ら. 正常および強皮症患者皮膚線維芽細胞

におけるコラーゲンマトリックスによるコラーゲン合成制御機構の研究 (厚

生労働省 S).強皮症調査研究 平成 13 年度研究報告書, 45–50 (2002)

96. Moon HJ, Lee SR and Shim SN. Fucoidan Inhibits UVB-Induced MMP-1 Expression

in Human Skin Fibroblasts. Biol Pharm Bull, 31, 284–289 (2008)

doi: 10.1248/bpb.31.284.

97. Qin Z, Balimunkwe RM and Quan T. Age-related reduction of dermal fibroblast size

upregulates multiple matrix metalloproteinases as observed in aged human skin in

vivo. Br J Dermatol, 177, 1337–1348 (2017)

doi: 10.1111/bjd.15379. Epub 2017 Nov 1.

98. 清水忠道.光老化の臨床とメカニズム 真皮の光老化の分子メカニズム. 医

学のあゆみ, 248, 587–591 (2014)

99. 堀江健二,東口伸二,横越英彦ら.GABA の免疫および心の健康に及ぼす影

響.FOOD Style 21, 7, 64–68 (2003)

100. ONG J and KERR D I B. GABA-receptors in peripheral tissues. Life Sciences, 46,

1489–1501 (1990)

101. 小倉有紀,牟田恵子,松永由紀子ら. 新規真皮モデルによる三次元エラスチ

ン線維形成モデル. J Soc Cosmet Chem Jpn, 44, 278–284 (2010)

102. Kielty CM, Sherratt MJ and Shuttleworth CA. Elastic fibres. J Cell Sci, 115, 2817–

2828 (2002)

103. 甲斐原梢,宮川賢治,岡元孝二ら.コアセルベート特牲に基づく生体材料.

高分子論文集, 48, 311–317 (1991)

104. 中邨智之. 生体の伸縮性を生み出す仕組み—弾性線維形成の分子機構—.

152

日本香粧品学会誌, 43, 14–17 (2019)

105. Tzaphidou M. The role of collagen and elastin in aged skin: an image processing

approach. Micron, 35, 173–177 (2004)

106. 川田 暁. 新・皮膚科セミナリウム 高齢者の皮膚老化―基礎から臨床まで

2.皮膚の老化とは―通常の老化と光老化の違い. 日本皮膚科学会雑誌, 132,

2665–2669 (2022)

107. Cho S. The role of functional foods in cutaneous anti-aging. J Lifestyle Med. 4, 8–

16 (2014)

108. Zillich OV, Schweiggert-Weisz U, Eisner P, et al. Polyphenols as active ingredients

for cosmetic products. Int J Cosmetic Sci. 37, 455–464 (2015)

109. Komatsuzaki N, Shima J, Kawamoto S, et al. Production of γ-aminobutyric acid

(GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food

Microbiol, 22, 497–504 (2005)

110. Fotopoulos P, Kim J, Hyun M et al. DPY‐17 and MUA‐3interactforconnectivetissue‐

like tissue integrity in C. elegans; a model for Marfansyndrome. Genes Genomes

Genetics, 2015 doi:10.1534/g3.115.01846596.

111. Starcher B, d'Azzo A, Keller P.W., et al. Neuraminidase-1 is required for the normal

assembly of elastic fibers. Am J Physiol Lung Cell Mol Physiol, 2008

doi: 10.1152/ajplung.90346.2008

112. Sabatier L, Miosge N, Hubmacher D, et al. Fibrillin-3 expression in human

development. Matrix Biology, 30, 43–52 (2011)

113. Li J, Zhang Z, Liu Z, et al. Study of GABA in healthy volunteers: pharmacokinetics

and pharmacodynamics. Front Phamacol. 6, 260 (2015)

114. Tsugane S. Why has Japan become the world’s most long-lived country: insights

from a food and nutrition perspective. Eur J Clin Nutr, 75, 921–928 (2021)

115. Tsuji I. Epidemiologic Research on Healthy Life Expectancy and Proposal for Its

Extension: A Revised English Version of Japanese in the Journal of the Japan

Medical Association, Japan Med Assoc J, 148, 1781–1784 (2019)

153

116. Nishikawa H, Fukunishi S, Asai A et al. Pathophysiology and mechanisms of primary

sarcopenia (Review). Int J Mol Med, 48, 156 (2021)

117. Sirago G, Toniolo L, Crea E et al. A short-term treatment with resveratrol improves

the inflammatory conditions of Middle-aged mice skeletal muscles. Int J Food Sci

Nutr, 18, 1–8 (2022)

118. Kitamura A , Seino S, Abe T, et al. Sarcopenia: prevalence, associated factors, and

therisk of mortality and disability in Japanese older adults. J. Cachexia Sarcopenia

Muscle, 12, 30–38 (2021)

119. Shimada M, Hasegawa T, Nishimura C et al. Anti-Hypertensive Effect of γAminobutyric Acid (GABA)-Rich Chlorella on High-Normal Blood Pressure and

Borderline Hypertension in Placebo-Controlled Double Blind Study. Clinical and

Experimental Hypertension, 2016 DOI: 10.1080/10641960902977908

120. Powers ME, Yarrow JF, Mccoy SC et al. Growth hormone isoform responses to

GABA ingestion at rest and after exercise. Med Sci Sports Exerc, 40, 104–110 (2008)

121. Velloso CP. Regulation of muscle mass by growth hormone and IGF-I. Br J Clin

Pharmacol, 154, 557–568 (2008)

122. Choe H, Lee H, Lee J et al. Protective effect of gamma-aminobutyric acid against

oxidative stress by inducing phase II enzymes in C2C12 myoblast cells. J Food

Biochem, 2021 DOI: 10.1111/jfbc.13639.

123. Matsubara T, Urata M, Nakajima T et al. Geranylgeraniol-induced Myogenic

Differentiation of C2C12 Cells. In Vivo, 32, 1427–1431 (2018)

124. Legerlotz K and Smith HK. Role of MyoD in denervated, disused, and exercised

muscle. Muscle Nerve, 38, 1087–1100 (2008)

125. Brown EL, Foletta VC, Wright CR et al. PGC-1α and PGC-1β Increase Protein

Synthesis via ERRα in C2C12 Myotubes. Front Physiol, 2018

DOI: 10.3389/fphys.2018.01336.

126. Ryan AS and Li G. Skeletal muscle myostatin gene expression and sarcopenia in

overweight and obese middle-aged and older adults. JCSM Clin Rep, 6, 137–142

154

(2021)

127. Shintaku J, Peterson JM, Talbert EE et al. MyoD Regulates Skeletal Muscle

Oxidative Metabolism Cooperatively with Alternative NF-kB. Cell Reports, 17,

514–526 (2016)

128. Bouviere J, Fortunato RS, Dupuy C et al. Exercise-Stimulated ROS Sensitive

Signaling Pathways in Skeletal Muscle. Antioxidants, 2021

DOI:10.3390/antiox10040537

129. Wang L, Ma S, Ding Q et al. CRISPR/Cas9-mediated MSTN gene editing induced

mitochondrial alterations in C2C12 myoblast cells. Electronic Journal of

Biotechnology, 40, 30–39 (2019)

130. Son YH, Jang EJ, Kim YW et al. Sulforaphane prevents dexamethasone-induced

muscle atrophy via regulation of the Akt/Foxo1 axis in C2C12 myotubes. Biomed

Pharmacother, 95, 1486–1492 (2017)

155

謝辞

本論文を校閲、添削され、御懇切なる御指導を頂きました九州大学大学院農

学研究院生命機能科学部門発酵化学教授 竹川薫先生に深甚なる感謝の意を表

します。また、本論文を校閲・添削され、御指導をいただいた九州大学大学院

農学研究院生命機能科学部門細胞制御工学教授 片倉喜範先生、九州大学大学

院農学研究院生命機能科学部門発酵化学准教授 樋口裕次郎先生に深く感謝申

し上げます。

本研究の多くは細胞実験によって行われました。細胞実験の手技、手法を御

教授下さいました大分大学医学部マトリックス医学研究室 松尾哲孝准教授に

厚く御礼申し上げます。

本研究は全て三和酒類株式会社研究所において行われたものであり、会社か

らの支援なくして実施することはできませんでした。このような機会を与えて

下さった三和酒類株式会社の役員様をはじめ、従業員の皆様に深く感謝の意を

表します。特に、学位取得の希望を申し上げた際、竹川教授を快く御紹介下さ

り、また多大なる御支援を下さった髙下秀春取締役に厚く御礼申し上げま

す。

さらに入社から今日まであらゆる場面で多大なる御指導と御鞭撻を賜り、本

論文をまとめるに際しても御支援を頂きました三和酒類株式会社三和研究所

外薗英樹副所長に深く感謝の意を表します。

最後に入社以来、あらゆる場面で実験に関する御助言を下さった三和酒類株

式会社三和研究所ウェルビーイング研究室 中村彰宏室長、クロスオーバーセ

ンター 丸岡生行主任研究員に深く御礼を申し上げます。

156

要約(英文)

We investigated the effective use of fermented barley extract (FBE), which is the liquid that

remains after removing solids from barley shochu lees. A sample of FBE purified by a synthetic

adsorbent was fractionated using high-performance liquid chromatography. Human chondrosarcoma

cells were exposed to the FBE fractions and the expression of cartilage degrading enzyme matrix

metalloproteinase (MMP)-13 mRNA was quantified by real-time polymerase chain reaction (PCR).

pEPYP, a pyroglutamyl tetrapeptide in fraction FBE-P40-5, significantly suppressed the mRNA and

protein expression of cartilage degrading enzyme MMP-13. Furthermore, pEPYP significantly

enhanced interleukin 10 mRNA and protein expression in lymphoblastic leukemia T cells. When

pEPYP was orally administered to rheumatoid arthritis model rats, the results indicated that the

edema score and anti-type II collagen antibody IgG level decreased. Ingestion of pEPYP by humans

with knee joint discomfort significantly reduced knee pain and stiffness. This result suggests that

pEPYP intake suppresses arthritis. Similarly, exposure of human colorectal adenocarcinoma (Caco2) cells to the pyroglutamylproline (pEP) contained in FBE-P60-4-6 significantly promoted

expression of ATP binding cassette subfamily G member (ABCG)2 mRNA and protein.

Immunostaining provided visual confirmation that ABCG2 was expressed in the plasma membrane

of Caco-2 cells. This result suggests that pEP intake could lower serum uric acid levels.

FBE is an excellent medium for culturing lactic acid bacteria, and γ-aminobutyric acid (GABA)

is produced via a fermentation process using FBE as a medium. Using normal human dermal

fibroblasts, we confirmed the effect of GABA on the expression of genes involved in skin elasticity

by real-time PCR. GABA significantly promoted COL1A1 mRNA expression and significantly

decreased MMP-1 mRNA expression. Significant increases in ELN and FBN-1, FBN-2, and FBLN5 mRNA were also observed. Increased expression of elastin protein was visually confirmed by

immunofluorescent staining. These results suggest that GABA intake directly maintains skin

elasticity. Proliferation of mouse myoblasts exposed to GABA was significantly increased. GABA

also significantly increased MyoD and PGC-1α mRNA and protein expression and significantly

decreased myostatin mRNA and protein expression. These results suggest that GABA may not only

directly promote an increase in, but also prevent the loss of skeletal muscle mass.

157

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る