リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ニワトリの骨格筋成長ならびに筋細胞増殖に対するミトコンドリア呼吸鎖超複合体の関与」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ニワトリの骨格筋成長ならびに筋細胞増殖に対するミトコンドリア呼吸鎖超複合体の関与

袴田 祐基 東北大学

2021.03.25

概要

本研究では、ニワトリ骨格筋ミトコンドリアにおいて SCs 形成、ATP 産生、ROS 産生がどのような関係性で成り立ち、速い筋成長を示す肉用鶏の特性を明らかにすることを目的した。本研究では、まず、SCs 形成量、ATP および ROS 産生能を、成長速度が異なる肉用鶏と卵用鶏の胸筋間(第二章では第一節)、ならびに肉用鶏において成長速度ならびに代謝特性が異なる骨格筋間(第二節)でそれぞれ比較した。その結果、成長速度が速い骨格筋では、SCs 形成量、ATP 産生、ROS 産生がいずれも低いことが示されたため、続いて、SCs 形成因子をノックダウンした筋芽細胞における上記因子ならびに細胞数への影響を調べ、SCs 形成の意義をさらに追究した(第三章)。その結果、SCs形成抑制によってニワトリ筋芽細胞の ROS 産生量の低下と細胞増殖促進が認められたことから、SCs 形成抑制にともなう細胞増殖促進メカニズムの一端を調べた(第四章)。

この論文で使われている画像

参考文献

Aberle, E., and Stewart, T. (1983). Growth of fiber types and apparent fiber number in skeletal muscle of broiler-and layer-type chickens. Growth 47, 135-144.

Allaman, I., Bélanger, M., and Magistretti, P.J. (2011). Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34, 76-87.

Antalíková, J., Jankela, J., and Baranovská, M. (1999). Synthesis in Two Skeletal Muscles of Japanese Quail. Physiol. Res 48, 59-63.

Balaban, R.S., Nemoto, S., and Finkel, T. (2005). Mitochondria, Oxidants, and Aging. Cell 120, 483-495.

Bottje, W.G., and Carstens, G.E. (2009). Association of mitochondrial function and feed efficiency in poultry and livestock species. J Anim Sci 87, E48-63.

Boveris, A., Oshino, N., and Chance, B. (1972). The cellular production of hydrogen peroxide. Biochem J128, 617-630.

Brown, D.R., DeNise, S.K., and McDaniel, R.G. (1986). Hepatic Mitochondrial Activity in Two Breeds of Chicken12. Poultry Sci 65, 613-615.

Burdon, R.H. (1995). Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 18, 775-794.

Buzala, M., and Janicki, B. (2016). Review: Effects of different growth rates in broiler breeder and layer hens on some productive traits. Poultry Sci 95, 2151-2159.

Darhan, H., Kikusato, M., Toyomizu, M., Roh, S.-g., Katoh, K., Sato, M., and Suzuki, K. (2017). Selection for high and low oxygen consumption-induced differences in maintenance energy requirements of mice. Animal Science Journal 88, 959-965.

Das, S., Morvan, F., Jourde, B., Meier, V., Kahle, P., Brebbia, P., Toussaint, G., Glass, D.J., and Fornaro,M. (2015). ATP citrate lyase improves mitochondrial function in skeletal muscle. Cell Metab 21, 868- 876.

Dominko, K., and Đikić, D. (2018). Glutathionylation: a regulatory role of glutathione in physiological processes. Arh Hig Rada Toksikol 69, 1-24.

Fedor, J.G., and Hirst, J. (2018). Mitochondrial Supercomplexes Do Not Enhance Catalysis by Quinone Channeling. Cell Metabolism 28, 525-531.e524.

Furukawa, K., Kikusato, M., Kamizono, T., Yoshida, H., and Toyomizu, M. (2015). Possible Involvement of Mitochondrial Reactive Oxygen Species Production in Protein Degradation Induced by Heat Stress in Avian Muscle Cells. The Journal of Poultry Science advpub.

Glancy, B., and Balaban, R.S. (2011). Protein composition and function of red and white skeletal muscle mitochondria. American Journal of Physiology-Cell Physiology 300, C1280-C1290.

Goddard, C., Wilkie, R.S., and Dunn, I.C. (1988). The relationship between insulin-like growth factor-1, growth hormone, thyroid hormones and insulin in chickens selected for growth. Domestic Animal Endocrinology 5, 165-176.

Guttridge, D.C., Albanese, C., Reuther, J.Y., Pestell, R.G., and Baldwin, A.S., Jr. (1999). NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19, 5785-5799.

Hackenbrock, C.R., Chazotte, B., and Gupte, S.S. (1986). The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. Journal of Bioenergetics and Biomembranes 18, 331-368.

Hakamata, Y., Toyomizu, M., and Kikusato, M. (2020). Differences in Breast Muscle Mitochondrial Respiratory Capacity, Reactive Oxygen Species Generation, and Complex Characteristics between 7- week-old Meat- and Laying-type Chickens. J Poult Sci 57, 319-327.

Halevy, O., Piestun, Y., Allouh, M.Z., Rosser, B.W., Rinkevich, Y., Reshef, R., Rozenboim, I., Wleklinski-Lee, M., and Yablonka-Reuveni, Z. (2004). Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn 231, 489- 502.

Havens, C.G., Ho, A., Yoshioka, N., and Dowdy, S.F. (2006). Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species. Mol Cell Biol 26, 4701-4711.

Herzberg, N.H., Zwart, R., Wolterman, R.A., Ruiter, J.P.N., Wanders, R.J.A., Bolhuis, P.A., and Vandenbogert, C. (1993). Differentiation and Proliferation of Respiration-Deficient Human Myoblasts. Biochimica Et Biophysica Acta 1181, 63-67.

Hirst, J. (2018). Open questions: respiratory chain supercomplexes—why are they there and what do they do? BMC Biology 16, 111.

Ho, D.H., Reed, W.L., and Burggren, W.W. (2011). Egg yolk environment differentially influences physiological and morphological development of broiler and layer chicken embryos. The Journal of Experimental Biology 214, 619.

Ikeda, K., Horie-Inoue, K., Suzuki, T., Hobo, R., Nakasato, N., Takeda, S., and Inoue, S. (2019). Mitochondrial supercomplex assembly promotes breast and endometrial tumorigenesis by metabolic alterations and enhanced hypoxia tolerance. Nat Commun 10, 4108.

Ikeda, K., Shiba, S., Horie-Inoue, K., Shimokata, K., and Inoue, S. (2013). A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat Commun 4, 2147.

Iqbal, M., Pumford, N.R., Tang, Z.X., Lassiter, K., Wing, T., Cooper, M., and Bottje, W. (2004). Low feed efficient broilers within a single genetic line exhibit higher oxidative stress and protein expression in breast muscle with lower mitochondrial complex activity. Poultry Sci 83, 474-484.

Jones, S.J., Aberle, E.D., and Judge, M.D. (1986). Skeletal Muscle Protein Turnover in Broiler and Layer Chicks. Journal of Animal Science 62, 1576-1583.

Kang, C.W., Sunde, M.L., and Swick, R.W. (1985). Growth and Protein Turnover in the Skeletal Muscles of Broiler Chicks1. Poultry Sci 64, 370-379.

Kikusato, M., and Toyomizu, M. (2019). Differential effects of heat stress on oxidative status of skeletal muscle with different muscle fibre compositions in broiler chicken. Journal of Animal and Feed Sciences 28, 78-82.

Kim, J., Lee, K., Fujioka, H., Tandler, B., and Hoppel, C.L. (2018). Cardiac mitochondrial structure and function in tafazzin-knockdown mice. Mitochondrion 43, 53-62.

Klasing, K.C., and Jarrell, V.L. (1985). Regulation of Protein Degradation in Chick Muscle by Several Hormones and Metabolites. Poultry Sci 64, 694-699.

Kong, B.W., Hudson, N., Seo, D., Lee, S., Khatri, B., Lassiter, K., Cook, D., Piekarski, A., Dridi, S., Anthony, N., et al. (2017). RNA sequencing for global gene expression associated with muscle growth in a single male modern broiler line compared to a foundational Barred Plymouth Rock chicken line. Bmc Genomics 18.

Lambert, A.J., Buckingham, J.A., Boysen, H.M., and Brand, M.D. (2010). Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the long-lived pigeon, Columba livia. Aging Cell 9, 78-91.

Lapuente-Brun, E., Moreno-Loshuertos, R., Acin-Perez, R., Latorre-Pellicer, A., Colas, C., Balsa, E., Perales-Clemente, E., Quiros, P.M., Calvo, E., Rodriguez-Hernandez, M.A., et al. (2013). Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567-1570.

Letts, J.A., Fiedorczuk, K., and Sazanov, L.A. (2016). The architecture of respiratory supercomplexes. Nature 537, 644-+.

Li, Y.-P., Chen, Y., Li, A.S., and Reid, M.B. (2003). Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. American Journal of Physiology-Cell Physiology 285, C806-C812.

Liu, Y., Fiskum, G., and Schubert, D. (2002). Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80, 780-787.

Lopez-Fabuel, I., Le Douce, J., Logan, A., James, A.M., Bonvento, G., Murphy, M.P., Almeida, A., and Bolanos, J.P. (2016). Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. P Natl Acad Sci USA 113, 13063-13068.

Loschen, G., Flohé, L., and Chance, B. (1971). Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria. FEBS Lett 18, 261-264.

Lunt, S.Y., and Vander Heiden, M.G. (2011). Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27, 441-464.

Malinska, D., Kudin, A.P., Bejtka, M., and Kunz, W.S. (2012). Changes in mitochondrial reactive oxygen species synthesis during differentiation of skeletal muscle cells. Mitochondrion 12, 144-148.

Maranzana, E., Barbero, G., Falasca, A.I., Lenaz, G., and Genova, M.L. (2013). Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 19, 1469-1480.

Milenkovic, D., Blaza, J.N., Larsson, N.G., and Hirst, J. (2017). The Enigma of the Respiratory Chain Supercomplex. Cell Metab 25, 765-776.

Mileykovskaya, E., and Dowhan, W. (2014). Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem Phys Lipids 179, 42-48.

Mitsopoulos, P., Chang, Y.-H., Wai, T., König, T., Dunn, S.D., Langer, T., and Madrenas, J. (2015). Stomatin-Like Protein 2 Is Required for <em>In Vivo</em> Mitochondrial Respiratory Chain Supercomplex Formation and Optimal Cell Function. Molecular and Cellular Biology 35, 1838.

Moreno-Lastres, D., Fontanesi, F., Garcia-Consuegra, I., Martin, M.A., Arenas, J., Barrientos, A., and Ugalde, C. (2012). Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab 15, 324-335.

Morita, M., Gravel, S.P., Chénard, V., Sikström, K., Zheng, L., Alain, T., Gandin, V., Avizonis, D., Arguello, M., Zakaria, C., et al. (2013). mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 18, 698-711.

Newsholme, P., Haber, E.P., Hirabara, S.M., Rebelato, E.L.O., Procopio, J., Morgan, D., Oliveira-Emilio, H.C., Carpinelli, A.R., and Curi, R. (2007). Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. The Journal of Physiology 583, 9-24.

O'Hea, E.K., and Leveille, G.A. (1968). Lipogenesis in isolated adipose tissue of the domestic chick (Gallus domesticus). Comparative Biochemistry and Physiology 26, 111-120.

Pallardó, F.V., Markovic, J., García, J.L., and Viña, J. (2009). Role of nuclear glutathione as a key regulator of cell proliferation. Mol Aspects Med 30, 77-85.

Park, S.-Y., Gifford, J.R., Andtbacka, R.H.I., Trinity, J.D., Hyngstrom, J.R., Garten, R.S., Diakos, N.A., Ives, S.J., Dela, F., Larsen, S., et al. (2014). Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal? American Journal of Physiology-Heart and Circulatory Physiology 307, H346-H352.

Picard, M., Hepple, R.T., and Burelle, Y. (2012). Mitochondrial functional specialization in glycolytic and oxidative muscle fibers: tailoring the organelle for optimal function. American journal of physiology. Cell physiology 302, C629-641.

Protasoni, M., Perez-Perez, R., Lobo-Jarne, T., Harbour, M.E., Ding, S.J., Penas, A., Diaz, F., Moraes, C.T., Fearnley, I.M., Zeviani, M., et al. (2020). Respiratory supercomplexes act as a platform for complex III-mediated maturation of human mitochondrial complexes I and IV. Embo Journal 39.

Rajasekaran, N.S., Shelar, S.B., Jones, D.P., and Hoidal, J.R. (2020). Reductive stress impairs myogenic differentiation. Redox Biol 34, 101492.

Rochard, P., Rodier, A., Casas, F., Cassar-Malek, I., Marchal-Victorion, S., Daury, L., Wrutniak, C., and Cabello, G. (2000). Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. Journal of Biological Chemistry 275, 2733-2744.

Rosca, M., Minkler, P., and Hoppel, C.L. (2011). Cardiac mitochondria in heart failure: Normal cardiolipin profile and increased threonine phosphorylation of complex IV. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1807, 1373-1382.

Rubin, C.J., Zody, M.C., Eriksson, J., Meadows, J.R., Sherwood, E., Webster, M.T., Jiang, L., Ingman, M., Sharpe, T., Ka, S., et al. (2010). Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464, 587-591.

Saunderson, C.L., and Leslie, S. (1988). Muscle growth and protein degradation during early development in chicks of fast and slow growing strains. Comp Biochem Physiol A Comp Physiol 89, 333-337.

Schägger, H. (2001). Blue-native gels to isolate protein complexes from mitochondria. Methods Cell Biol65, 231-244.

Schagger, H., de Coo, R., Bauer, M.F., Hofmann, S., Godinot, C., and Brandt, U. (2004). Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279, 36349- 36353.

Schiaffino, S., Hanzlíková, V.r., and Pierobon, S. (1970). RELATIONS BETWEEN STRUCTURE AND FUNCTION IN RAT SKELETAL MUSCLE FIBERS. Journal of Cell Biology 47, 107-119.

Schiaffino, S., Reggiani, C., Kostrominova, T.Y., Mann, M., and Murgia, M. (2015). Mitochondrial specialization revealed by single muscle fiber proteomics: focus on the Krebs cycle. Scandinavian journal of medicine & science in sports 25 Suppl 4, 41-48.

Sehara, A. (2001). Molecular Mechanisms of Skeletal Myogenesis. Connective tissue 33, 293-300.

Stitt, T.N., Drujan, D., Clarke, B.A., Panaro, F., Timofeyva, Y., Kline, W.O., Gonzalez, M., Yancopoulos, G.D., and Glass, D.J. (2004). The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14, 395-403.

Stride, N., Larsen, S., Hey-Mogensen, M., Sander, K., Lund, J.T., Gustafsson, F., Køber, L., and Dela, F. (2013). Decreased mitochondrial oxidative phosphorylation capacity in the human heart with left ventricular systolic dysfunction. Eur J Heart Fail 15, 150-157.

Sullivan, L.B., Gui, D.Y., and Vander Heiden, M.G. (2016). Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer 16, 680-693.

Suzuki, A., Tsuchiya, T., Ohwada, S., and Tamate, H. (1985). Distribution of myofiber types in thigh muscles of chickens. J Morphol 185, 145-154.

Thakar, J.H. (1977). Oxidative phosphorylation in mitochondria from different fiber types of chicken muscles. Physiol Chem Phys 9, 285-295.

Toyomizu, M., Kikusato, M., Kawabata, Y., Azad, M.A., Inui, E., and Amo, T. (2011). Meat-type chickens have a higher efficiency of mitochondrial oxidative phosphorylation than laying-type chickens. Comp Biochem Physiol A Mol Integr Physiol 159, 75-81.

Turner, N., Bruce, C.R., Beale, S.M., Hoehn, K.L., So, T., Rolph, M.S., and Cooney, G.J. (2007). Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56, 2085-2092.

Wang, X., Hu, Z., Hu, J., Du, J., and Mitch, W.E. (2006). Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling.Endocrinology 147, 4160-4168.

Wen, C., Jiang, X., Ding, L., Wang, T., and Zhou, Y. (2017). Effects of dietary methionine on breast muscle growth, myogenic gene expression and IGF-I signaling in fast- and slow-growing broilers. Sci Rep 7, 1924.

Yu, M., Wang, H., Xu, Y., Yu, D., Li, D., Liu, X., and Du, W. (2015). Insulin-like growth factor-1 (IGF- 1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway. Cell Biology International 39, 910-922.

Zhao, R., Muehlbauer, E., Decuypere, E., and Grossmann, R. (2004). Effect of genotype–nutrition interaction on growth and somatotropic gene expression in the chicken. General and Comparative Endocrinology 136, 2-11.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る