リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Temporal dynamics of the sensorimotor convergence underlying voluntary limb movement」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Temporal dynamics of the sensorimotor convergence underlying voluntary limb movement

Umeda, Tatsuya Isa, Tadashi Nishimura, Yukio 京都大学 DOI:10.1073/pnas.2208353119

2022.11.29

概要

Descending motor drive and somatosensory feedback play important roles in modulating muscle activity. Numerous studies have characterized the organization of neuronal connectivity in which descending motor pathways and somatosensory afferents converge on spinal motor neurons as a final common pathway. However, how inputs from these two pathways are integrated into spinal motor neurons to generate muscle activity during actual motor behavior is unknown. Here, we simultaneously recorded activity in the motor cortices (MCx), somatosensory afferent neurons, and forelimb muscles in monkeys performing reaching and grasping movements. We constructed a linear model to explain the instantaneous muscle activity using the activity of MCx (descending input) and peripheral afferents (afferent input). Decomposition of the reconstructed muscle activity into each subcomponent indicated that muscle activity before movement onset could first be explained by descending input from mainly the primary motor cortex and muscle activity after movement onset by both descending and afferent inputs. Descending input had a facilitative effect on all muscles, whereas afferent input had a facilitative or suppressive effect on each muscle. Such antagonistic effects of afferent input can be explained by reciprocal effects of the spinal reflex. These results suggest that descending input contributes to the initiation of limb movement, and this initial movement subsequently affects muscle activity via the spinal reflex in conjunction with the continuous descending input. Thus, spinal motor neurons are subjected to temporally organized modulation by direct activation through the descending pathway and the lagged action of the spinal reflex during voluntary limb movement.

この論文で使われている画像

参考文献

1. J. B. Nielsen, Sensorimotor integration at spinal level as a basis for muscle coordination during voluntary movement in humans. J. Appl. Physiol. 96, 1961–1967 (2004).

2. D. A. McCrea, Supraspinal and segmental interactions. Can. J. Physiol. Pharmacol. 74, 513–517 (1996).

3. E. Jankowska, Interneuronal relay in spinal pathways from proprioceptors. Prog. Neurobiol. 38, 335–378 (1992).

4. F. Baldissera, H. Hultborn, M. Illert, “Integration in Spinal Neuronal Systems” in Handbook of Physiology, The Nervous System, Motor Control, (American Physiological Society, 1977), pp. 509–595.

5. H. Hultborn, Spinal reflexes, mechanisms and concepts: From Eccles to Lundberg and beyond. Prog. Neurobiol. 78, 215–232 (2006).

6. A. Lundberg, P. Voorhoeve, Effects from the pyramidal tract on spinal reflex arcs. Acta Physiol. Scand. 56, 201–219 (1962).

7. J. F. Iles, J. V. Pisini, Cortical modulation of transmission in spinal reflex pathways of man. J. Physiol. 455, 425–446 (1992).

8. J. Nielsen, N. Petersen, G. Deuschl, M. Ballegaard, Task-related changes in the effect of magnetic brain stimulation on spinal neurones in man. J. Physiol. 471, 223–243 (1993).

9. J. M. Donelan, K. G. Pearson, Contribution of sensory feedback to ongoing ankle extensor activity during the stance phase of walking. Can. J. Physiol. Pharmacol. 82, 589–598 (2004).

10. J. B. Nielsen, T. Sinkjaer, Afferent feedback in the control of human gait. J. Electromyogr. Kinesiol. 12, 213–217 (2002).

11. T. Sinkjaer, J. B. Andersen, M. Ladouceur, L. O. Christensen, J. B. Nielsen, Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J. Physiol. 523, 817–827 (2000).

12. C. Ghez, J. H. Martin, The control of rapid limb movement in the cat. III. Agonist - antagonist coupling. Exp. Brain Res. 45, 115–125 (1982).

13. M. Hallett, B. T. Shahani, R. R. Young, EMG analysis of stereotyped voluntary movements in man. J. Neurol. Neurosurg. Psychiatry 38, 1154–1162 (1975).

14. H. Garland, R. W. Angel, Spinal and supraspinal factors in voluntary movement. Exp. Neurol. 33, 343–350 (1971).

15. T. Umeda, T. Isa, Y. Nishimura, The somatosensory cortex receives information about motor output. Sci. Adv. 5, eaaw5388 (2019).

16. S. Ray, S. S. Hsiao, N. E. Crone, P. J. Franaszczuk, E. Niebur, Effect of stimulus intensity on the spike- local field potential relationship in the secondary somatosensory cortex. J. Neurosci. 28, 7334–7343 (2008).

17. C. Capaday, C. van Vreeswijk, Linear summation of outputs in a balanced network model of motor cortex. Front. Comput. Neurosci. 9, 63 (2015).

18. C. Ethier, L. Brizzi, W. G. Darling, C. Capaday, Linear summation of cat motor cortex outputs. J. Neurosci. 26, 5574–5581 (2006).

19. E. Todorov, Direct cortical control of muscle activation in voluntary arm movements: A model. Nat. Neurosci. 3, 391–398 (2000).

20. R. Tanaka, Reciprocal Ia inhibition during voluntary movements in man. Exp. Brain Res. 21, 529–540 (1974).

21. J. Weiler, P. L. Gribble, J. A. Pruszynski, Spinal stretch reflexes support efficient control of reaching. J. Neurophysiol. 125, 1339–1347 (2021).

22. E. Azim, K. Seki, Gain control in the sensorimotor system. Curr. Opin. Physiol. 8, 177–187 (2019).

23. J. S. Wiegert, M. Mahn, M. Prigge, Y. Printz, O. Yizhar, Silencing neurons: Tools, applications, and experimental constraints. Neuron 95, 504–529 (2017).

24. M. Matsumura, T. Sawaguchi, T. Oishi, K. Ueki, K. Kubota, Behavioral deficits induced by local injection of bicuculline and muscimol into the primate motor and premotor cortex. J. Neurophysiol. 65, 1542–1553 (1991).

25. L. Fogassi et al., Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. Brain 124, 571–586 (2001).

26. S. Kubota et al., Optogenetic recruitment of spinal reflex pathways from large-diameter primary afferents in non-transgenic rats transduced with AAV9/Channelrhodopsin 2. J. Physiol. 597, 5025–5040 (2019).

27. J. B. Nielsen, Human spinal motor control. Annu. Rev. Neurosci. 39, 81–101 (2016).

28. R. Af Klint, J. B. Nielsen, T. Sinkjaer, M. J. Grey, Sudden drop in ground support produces force-related unload response in human overground walking. J. Neurophysiol. 101, 1705–1712 (2009).

29. T. R. Nichols, Distributed force feedback in the spinal cord and the regulation of limb mechanics. J. Neurophysiol. 119, 1186–1200 (2018).

30. A. Lundberg, K. Malmgren, E. D. Schomburg, Cutaneous facilitation of transmission in reflex pathways from Ib afferents to motoneurones. J. Physiol. 265, 763–780 (1977).

31. S. H. Dueñas, P. Rudomin, Excitability changes of ankle extensor group Ia and Ib fibers during fictive locomotion in the cat. Exp. Brain Res. 70, 15–25 (1988).

32. K. Seki, S. I. Perlmutter, E. E. Fetz, Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat. Neurosci. 6, 1309–1316 (2003).

33. A. J. Fink et al., Presynaptic inhibition of spinal sensory feedback ensures smooth movement. Nature 509, 43–48 (2014).

34. G. W. Hiebert, K. G. Pearson, Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate Cat. J. Neurophysiol. 81, 758–770 (1999).

35. R. B. Stein, J. E. Misiaszek, K. G. Pearson, Functional role of muscle reflexes for force generation in the decerebrate walking cat. J. Physiol. 525, 781–791 (2000).

36. J. Weiler, P. L. Gribble, J. A. Pruszynski, Spinal stretch reflexes support efficient hand control. Nat. Neurosci. 22, 529–533 (2019).

37. P. D. Cheney, E. E. Fetz, S. S. Palmer, Patterns of facilitation and suppression of antagonist forelimb muscles from motor cortex sites in the awake monkey. J. Neurophysiol. 53, 805–820 (1985).

38. E. Jankowska, Y. Padel, R. Tanaka, Disynaptic inhibition of spinal motoneurones from the motor cortex in the monkey. J. Physiol. 258, 467–487 (1976).

39. E. E. Fetz, P. D. Cheney, Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J. Neurophysiol. 44, 751–772 (1980).

40. R. J. Kasser, P. D. Cheney, Characteristics of corticomotoneuronal postspike facilitation and reciprocal suppression of EMG activity in the monkey. J. Neurophysiol. 53, 959–978 (1985).

41. A. Dubey, S. Ray, Cortical electrocorticogram (ECoG) is a local signal. J. Neurosci. 39, 4299–4311 (2019).

42. M. M. Morrow, L. E. Miller, Prediction of muscle activity by populations of sequentially recorded primary motor cortex neurons. J. Neurophysiol. 89, 2279–2288 (2003).

43. D. Shin et al., Prediction of muscle activities from electrocorticograms in primary motor cortex of primates. PLoS One 7, e47992 (2012).

44. M. Sato, On-line model selection based on the variational Bayes. Neural. Comput. 12, 1649–1681 (2001).

45. M. H. Schieber, G. Rivlis, Partial reconstruction of muscle activity from a pruned network of diverse motor cortex neurons. J. Neurophysiol. 97, 70–82 (2007).

46. D. Flament, P. A. Fortier, E. E. Fetz, Response patterns and postspike effects of peripheral afferents in dorsal root ganglia of behaving monkeys. J. Neurophysiol. 67, 875–889 (1992).

47. J. A. Pruszynski et al., Primary motor cortex underlies multi-joint integration for fast feedback control. Nature 478, 387–390 (2011).

48. T. Umeda et al., Data of Temporal dynamics of the sensorimotor convergence underlying voluntary limb movement. Zenodo. https://zenodo.org/deposit/7100949. Deposited 21 September 2022.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る