リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Genetic and epidemiological analysis of ESBL-producing Klebsiella pneumoniae in three Japanese university hospitals」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Genetic and epidemiological analysis of ESBL-producing Klebsiella pneumoniae in three Japanese university hospitals

岡, 圭輔 名古屋大学

2022.12.22

概要

Introduction: We aimed to clarify the genetic background and molecular epidemiology of extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae (K. pneumoniae) at three geographically separated university hospitals in Japan.

Methods: From January 2014 to December 2016, 118 ESBL-producing K. pneumoniae (EPKP) strains that were detected and stored at three university hospitals were collected. Molecular epidemiological analysis was performed using enterobacterial repetitive intergenic consensus (ERIC)-polymerase chain reaction (PCR) and multilocus sequence typing (MLST). The ESBL type was determined using the PCR-sequence method. The presence of plasmid-mediated fluoroquinolone resistance (PMQR) genes was analyzed by PCR. We compared the relationships between PMQR gene possession/quinolone resistance-determining region (QRDR) mutation and levofloxacin (LVFX)/ciprofloxacin (CPFX) susceptibility.

Results: The detection rate of EPKP was 4.8% (144/2987 patients). MLST analysis revealed 62 distinct sequence types (STs). The distribution of STs was diverse, and only some EPKP strains had the same STs. ERIC-PCR showed discriminatory power similar to that of MLST. The major ESBL genotypes were CTX-M-15-, CTX-M-14-, and SHVtypes, which were detected in 47, 30, and 27 strains, respectively. Ninety-one out of 118 strains had PMQR genes and 14 out of 65 strains which were not susceptible to CPFX had QRDR mutations, and the accumulation of PMQR genes and QRDR mutations tended to lead to higher minimum inhibitory concentrations (MICs) of LVFX.

Conclusions: At three geographically separated university hospitals in Japan, the epidemiology of EPKP was quite diverse, and no epidemic strains were found, whereas CTX-M-14 and CTX-M-15 were predominant.

参考文献

[1] Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens Infection, 11; 1983. p. 315–7. https://doi.org/ 10.1007/BF01641355.

[2] Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001;14:933–51. https://doi.org/10.1128/CMR.14.4.933- 951.2001. table of contents.

[3] Pitout JD, Nordmann P, Laupland KB, Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother 2005;56:52–9. https://doi.org/10.1093/jac/dki166.

[4] Gales AC, Castanheira M, Jones RN, Sader HS. Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008-2010). Diagn Microbiol Infect Dis 2012;73:354–60. https://doi.org/10.1016/j.diagmicrobio.2012.04.007.

[5] Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist 2021;3:dlab092. https://doi.org/10.1093/jacamr/dlab092.

[6] Yamaguchi K, Tateda K, Ohno A, Ishii Y, Murakami H. Surveillance of in vitro susceptibilities to levofloxacin and various antibacterial agents for 11,762 clinical isolates obtained from 69 centers in 2013. Jpn J Antibiot 2016;69:1–25.

[7] Nakamura T, Komatsu M, Yamasaki K, Fukuda S, Miyamoto Y, Higuchi T, et al. Epidemiology of Escherichia coli, Klebsiella species, and Proteus mirabilis strains producing extended-spectrum beta-lactamases from clinical samples in the Kinki Region of Japan. Am J Clin Pathol 2012;137:620–6. https://doi.org/10.1309/ AJCP48PDVKWQOXEZ.

[8] Japan nosocomial infections surveillance (JANIS). Data. 2017 (in Japanese), http s://janis.mhlw.go.jp/report/open_report/2017/3/1/ken_Open_Report_201700. pdf. [Accessed 20 February 2021].

[9] Müller-Schulte E, Tuo MN, Akoua-Koffi C, Schaumburg F, Becker SL. High prevalence of ESBL-producing Klebsiella pneumoniae in clinical samples from central Cote ˆ d’Ivoire. Int J Infect Dis 2020;91:207–9. https://doi.org/10.1016/j. ijid.2019.11.024.

[10] Babini GS, Livermore DM. Antimicrobial resistance amongst Klebsiella spp. collected from intensive care units in Southern and Western Europe in 1997–1998. J Antimicrob Chemother 2000;45:183–9. https://doi.org/10.1093/jac/45.2.183.

[11] Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, et al. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin Infect Dis 2004;39:31–7. https://doi. org/10.1086/420816.

[12] Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious diseases society of America guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin Infect Dis 2021;72:e169–83. https://doi.org/ 10.1093/cid/ciaa1478.

[13] Scheuerman O, Schechner V, Carmeli Y, Guti´errez-Guti´errez B, Calbo E, Almirante B, et al. Comparison of predictors and mortality between bloodstream infections caused by ESBL-producing Escherichia coli and ESBL-producing Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2018;39:660–7. https://doi.org/ 10.1017/ice.2018.63.

[14] Kakuta N, Nakano R, Nakano A, Suzuki Y, Masui T, Horiuchi S, et al. Molecular characteristics of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in Japan: predominance of CTX-M-15 and emergence of hypervirulent clones. Int J Infect Dis 2020;98:281–6. https://doi.org/10.1016/j.ijid.2020.06.083.

[15] Wayne PA, editor. Performance standards for antimicrobial susceptibility testing. Twenty-second informational supplement. CLSI; 2012. document M100-S22.

[16] Wayne PA, editor. Performance standards for antimicrobial susceptibility testing. M100-Ed28. CLSI; 2018.

[17] Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 2005;43:4178–82. https://doi.org/10.1128/JCM.43.8.4178-4182.2005.

[18] Institut Pasteur. MLST database of Klebsiella pneumoniae Sequence Typing, https ://bigsdb.pasteur.fr/klebsiella/, [accessed 24 February 2022].

[19] Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 1988;26: 2465–6. https://doi.org/10.1128/jcm.26.11.2465-2466.1988.

[20] Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 2004;199:697–705. https://doi.org/10.1084/ jem.20030857.

[21] Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 1991;19:6823–31. https://doi.org/10.1093/nar/19.24.6823.

[22] Annual report of akita research center for public Health and environment. 2010. p. 6 [in Japanese)], https://www.pref.akita.lg.jp/uploads/public/archive_000000 3585_00/akita-nenpouH22.pdf. [Accessed 20 February 2021].

[23] Kojima A, Ishii Y, Ishihara K, Esaki H, Asai T, Oda C, et al. Extended-spectrum-betalactamase-producing Escherichia coli strains isolated from farm animals from 1999 to 2002: report from the Japanese veterinary antimicrobial resistance monitoring program. Antimicrob Agents Chemother 2005;49:3533–7. https://doi.org/ 10.1128/AAC.49.8.3533-3537.2005.

[24] Basic local alignment search tool, https://blast.ncbi.nlm.nih.gov/Blast.cgi, [accessed 20 February 2021].

[25] Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC. Prevalence of plasmidmediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother 2009;53:639–45. https://doi.org/10.1128/AAC.01051-08.

[26] Shaheen BW, Nayak R, Foley SL, Boothe DM. Chromosomal and plasmid-mediated fluoroquinolone resistance mechanisms among broad-spectrum-cephalosporinresistant Escherichia coli isolates recovered from companion animals in the USA. J Antimicrob Chemother 2013;68:1019–24. https://doi.org/10.1093/jac/dks514.

[27] Cattoir V, Poirel L, Nordmann P. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob Agents Chemother 2008;52:3801–4. https://doi.org/10.1128/AAC.00638-08.

[28] Yamane K, Wachino J, Suzuki S, Arakawa Y. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob Agents Chemother 2008; 52:1564–6. https://doi.org/10.1128/AAC.01137-07.

[29] Khalil M, Elsherif R, Ghaith D, Ismail DK, Mohamed S, Jastaniah S, et al. Quinolone resistance detection by PCR-RFLP and multiplex-PCR among extended-spectrum β-lactamase producing Enterobacteriaceae. Int J Clin Med Microbiol 2017;2:119. https://doi.org/10.15344/2456-4028/2017/119.

[30] Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 2013;48:452–8. https://doi.org/ 10.1038/bmt.2012.244.

[31] de la Puente-Redondo VA, del Blanco NG, Guti´errez-Martín CB, García-Pena ˜ FJ, Rodríguez Ferri EF. Comparison of different PCR approaches for typing of Francisella tularensis strains. J Clin Microbiol 2000;38:1016–22. https://doi.org/ 10.1128/JCM.38.3.1016-1022.2000.

[32] Nicolas-Chanoine MH, Bertrand X, Madec JY. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 2014;27:543–74. https://doi.org/10.1128/ CMR.00125-13.

[33] Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 2012;13:601–12. https://doi.org/10.1038/nrg3226.

[34] Goudarzi G, Shakib P. The occurrence of blaCTX-M-15 extended-spectrum β-lactamase among clinical isolates of Klebsiella pneumoniae in khorramabad, Iran. Infect Disord - Drug Targets 2020;20:506–10. https://doi.org/10.2174/ 1871526519666191119122059.

[35] Carr¨er A, Nordmann P. CTX-M-15-producing Klebsiella pneumoniae: a change in the epidemiology of ESBL. Pathol Biol 2011;59. https://doi.org/10.1016/j. patbio.2009.06.003. e133–5.

[36] Muzaheed, Doi Y, Adams-Haduch JM, Shivannavar CT, Paterson DL, Gaddad SM. Faecal carriage of CTX-M-15-producing Klebsiella pneumoniae in patients with acute gastroenteritis. Indian J Med Res 2009;129:599–602.

[37] Xercavins M, Jim´enez E, Padilla E, Riera M, Freixas N, Boix-Palop L, et al. High clonal diversity of ESBL-producing Klebsiella pneumoniae isolates from clinical samples in a non-outbreak situation. A cohort study. Antimicrob Resist Infect Control 2020;9:5. https://doi.org/10.1186/s13756-019-0661-9.

[38] Hooper DC. Mechanisms of fluoroquinolone resistance. Drug Resist Updates 1999; 2:38–55. https://doi.org/10.1054/drup.1998.0068.

[39] Park YJ, Yu JK, Kim SY, Lee S, Jeong SH. Prevalence and characteristics of qnr determinants and aac(6′ )-Ib-cr among ciprofloxacin-susceptible isolates of Klebsiella pneumoniae in Korea. J Antimicrob Chemother 2010;65. https://doi.org/ 10.1093/jac/dkq258. 2041–3.

[40] Zhan Q, Xu Y, Wang B, Yu J, Shen X, Liu L, et al. Distribution of fluoroquinolone resistance determinants in carbapenem-resistant Klebsiella pneumoniae clinical isolates associated with bloodstream infections in China. BMC Microbiol 2021;21: 164. https://doi.org/10.1186/s12866-021-02238-7.

[41] Jacoby GA, Strahilevitz J, Hooper DC. Plasmid-mediated quinolone resistance. Microbiol Spectr 2014;2. https://doi.org/10.1128/microbiolspec.PLAS-0006- 2013.

[42] Yamane K, Wachino J, Suzuki S, Kimura K, Shibata N, Kato H, et al. New plasmidmediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 2007;51:3354–60. https://doi.org/ 10.1128/AAC.00339-07.

[43] Zhao X, Xu X, Zhu D, Ye X, Wang M. Decreased quinolone susceptibility in high percentage of Enterobacter cloacae clinical isolates caused only by Qnr determinants. Diagn Microbiol Infect Dis 2010;67:110–3. https://doi.org/ 10.1016/j.diagmicrobio.2009.12.018.

[44] Drlica K, Zhao X. Mutant selection window hypothesis updated. Clin Infect Dis 2007;44:681–8. https://doi.org/10.1086/511642.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る