リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「軽元素を用いたスピン軌道トルクの制御に関する研究 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

軽元素を用いたスピン軌道トルクの制御に関する研究 (本文)

白, 怜士 慶應義塾大学

2021.03.23

概要

本論文は以下のように構成される.第 2 章では電流-スピン軌道トルク変換現象に関する理論を述べ,第 3 章では電流-スピン軌道トルク生成効率の定量方法としてスピントルク強磁性共鳴の実験方法及び解析手法を示す.第 4 章では,貴金属である Pd に酸素分子を導入することによる Pd 中の電流-スピン流変換の変化を定量した研究について述べる.酸素を導入することによって電気抵抗率を変化させた Pd の物性評価に関して述べ,その後,電気抵抗率に対するスピン軌道トルクの生成効率の振る舞いから,Pd 中の内因性スピン Hall 効果を支配するメカニズムのクロスオーバーが示唆される結果が示される.第 5 章では,Pt/強磁性金属界面の酸化が電流-スピン軌道トルク変換に与える影響を調べた.まず界面の強磁性体の酸化について調べた結果を述べ,界面が酸化した Pt/強磁性金属二層薄膜において電流-スピン軌道トルク変換が著しく変化し,その影響が強磁性体の種類に強く依存することを明らかにした結果を示す.第 6 章では,Pt 表面における電子状態を自己組織化有機単分子膜によって操作し,その Pt 表面電子系における Rashba-Edelstein 効果に起因したスピン軌道トルクを制御した結果を示す.初めに自己組織化有機単分子膜によって変化した Pt 表面の電子状態及び有機分子の評価について述べ,有機分子を形成した Pt/Co 二層薄膜試料におけるスピン軌道トルク生成効率の定量及び表面 Rashba-Edelstein 効果の寄与の分離について示す.最後に自己組織化有機単分子膜による Pt 表面の Rashba-Edelstein 効果の変調が第一原理計算によっても支持されることを示す.第 7 章で,本研究の結論と今後の展望について述べる.

参考文献

[1] G. A. Prinz, Magnetoelectronics, Science 282, 1660 (1998).

[2] I. Zˇuti´c, J. Fabian, and S. D. Sarma, Spintronics: Fundamentals and applica- tions, Reviews of modern physics 76, 323 (2004).

[3] S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, S. Von Molnar, M. Roukes, A. Y. Chtchelkanova, and D. Treger, Spintronics: a spin-based electronics vision for the future, Science 294, 1488 (2001).

[4] S. Maekawa, Spin-dependent transport in magnetic nanostructures, Journal of Magnetism and Magnetic Materials 272-276, E1459 (2004), proceedings of the International Conference on Magnetism (ICM 2003).

[5] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices, Phys. Rev. Lett. 61, 2472 (1988).

[6] G. Binasch, P. Gru¨nberg, F. Saurenbach, and W. Zinn, Enhanced magnetoresis- tance in layered magnetic structures with antiferromagnetic interlayer exchange, Physical review B 39, 4828 (1989).

[7] P. F. Carcia, Perpendicular magnetic anisotropy in Pd/Co and Pt/Co thin ‐film layered structures, Journal of Applied Physics 63, 5066 (1988).

[8] P. Gru¨nberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers, Phys. Rev. Lett. 57, 2442 (1986).

[9] S. S. P. Parkin, Z. G. Li, and D. J. Smith, Giant magnetoresistance in antifer- romagnetic Co/Cu multilayers, Appl. Phys. Lett. 58, 2710 (1991).

[10] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Large Magnetore-sistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions, Phys. Rev. Lett. 74, 3273 (1995).

[11] J. C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159, L1 (1996).

[12] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co /Cu/Co Pillars, Phys. Rev. Lett. 84, 3149 (2000).

[13] L. Berger, Emission of spin waves by a magnetic multilayer traversed by a cur- rent, Phys. Rev. B 54, 9353 (1996).

[14] D. Ralph and M. Stiles, Spin transfer torques, Journal of Magnetism and Mag- netic Materials 320, 1190 (2008).

[15] V. Laukhin, V. Skumryev, X. Mart´ı, D. Hrabovsky, F. S´anchez, M. V. Garc´ıa- Cuenca, C. Ferrater, M. Varela, U. Lu¨ders, J. F. Bobo, and J. Fontcuberta, Electric-Field Control of Exchange Bias in Multiferroic Epitaxial Heterostruc- tures, Phys. Rev. Lett. 97, 227201 (2006).

[16] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Electric-field control of ferromagnetism, Nature 408, 944 (2000).

[17] M. Weisheit, S. F¨ahler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets, Science 315, 349 (2007).

[18] T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Large voltage-induced magnetic anisotropy change in a few atomic layers of iron, Nat. Nanotech. 4, 158 (2009).

[19] M. I. Dyakonov and V. I. Perel, Current-induced spin orientation of electrons in semiconductors, Phys. Lett. 35A, 459 (1971).

[20] E. L. Ivchenko and G. E. Pikus, New photogalvanic effect in gyrotropic crystals, Soviet Journal of Experimental and Theoretical Physics Letters 27, 604 (1978).

[21] V. A. Baskov, V. B. Ganenko, V. A. Gushchin, Y. V. Zhebrovskiˇi, V. V. Kim, L. Y. Kolesnikov, I. V. Konorov, B. I. Luchkov, V. A. Maisheev, A. L. Rubashkin, V. I. Sergienko, V. Y. Tugaenko, V. A. Khablo, and O. V. Chupikov, Nuclear electric resonance and orientation of carrier spins by an electric field, ZhETF Pisma Redaktsiiu 50, 395 (1989).

[22] A. Manchon and S. Zhang, Theory of nonequilibrium intrinsic spin torque in a single nanomagnet, Phys. Rev. B 78, 212405 (2008).

[23] A. Manchon and S. Zhang, Theory of spin torque due to spin-orbit coupling, Phys. Rev. B 79, 094422 (2009).

[24] A. Matos-Abiague and R. L. Rodr´ıguez-Su´arez, Spin-orbit coupling mediated spin torque in a single ferromagnetic layer, Phys. Rev. B 80, 094424 (2009).

[25] A. Chernyshov, M. Overby, X. Liu, J. K. Furdyna, Y. Lyanda-Geller, and L. P. Rokhinson, Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field, Nat. Phys. 5, 656 (2009).

[26] I. M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, and P. Gambardella, Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer, Nat. Mater. 9, 230 (2010).

[27] C. Chappert, A. Fert, and F. N. Van Dau, The emergence of spin electronics in data storage, Nat. Mater. 6, 813 (2007).

[28] D. Awschalom and N. Samarth, Spintronics without magnetism, Physics 2, (2009).

[29] A. Manchon, J. Zˇelezny´, I. M. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello, and P. Gambardella, Current-induced spin-orbit torques in ferromag- netic and antiferromagnetic systems, Rev. Mod. Phys. 91, 035004 (2019).

[30] Y. A. Bychkov and E. I. Rashba, Oscillatory effects and the magnetic suscep- tibility of carriers in inversion layers, Journal of physics C: Solid state physics 17, 6039 (1984).

[31] V. M. Edelstein, Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems, Solid State Commun. 73, 233 (1990).

[32] T. Nakagawa, O. Ohgami, Y. Saito, H. Okuyama, M. Nishijima, and T. Aruga, Transition between tetramer and monomer phases driven by vacancy configura-tion entropy on Bi/Ag(001), Phys. Rev. B 75, 155409 (2007).

[33] C. R. Ast, J. Henk, A. Ernst, L. Moreschini, M. C. Falub, D. Pacil´e, P. Bruno, K. Kern, and M. Grioni, Giant Spin Splitting through Surface Alloying, Phys. Rev. Lett. 98, 186807 (2007).

[34] T. Tanaka, H. Kontani, M. Naito, T. Naito, D. S. Hirashima, K. Yamada, and J. Inoue, Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals, Phys. Rev. B 77, 165117 (2008).

[35] M. Morota, Y. Niimi, K. Ohnishi, D. H. Wei, T. Tanaka, H. Kontani, T. Kimura, and Y. Otani, Indication of intrinsic spin Hall effect in 4d and 5d transition metals, Phys. Rev. B 83, 174405 (2011).

[36] L. Berger, Side-Jump Mechanism for the Hall Effect of Ferromagnets, Phys. Rev. B 2, 4559 (1970).

[37] A. Fert, A. Friederich, and A. Hamzic, Hall effect in dilute magnetic alloys, Journal of Magnetism and Magnetic Materials 24, 231 (1981).

[38] A. Fert and P. M. Levy, Spin Hall Effect Induced by Resonant Scattering on Impurities in Metals, Phys. Rev. Lett. 106, 157208 (2011).

[39] M. Gradhand, D. V. Fedorov, P. Zahn, and I. Mertig, Extrinsic Spin Hall Effect from First Principles, Phys. Rev. Lett. 104, 186403 (2010).

[40] Y. Niimi, Y. Kawanishi, D. H. Wei, C. Deranlot, H. X. Yang, M. Chshiev, T. Valet, A. Fert, and Y. Otani, Giant Spin Hall Effect Induced by Skew Scattering from Bismuth Impurities inside Thin Film CuBi Alloys, Phys. Rev. Lett. 109, 156602 (2012).

[41] A. Brataas, G. E. Bauer, and P. J. Kelly, Non-collinear magnetoelectronics, Physics Reports 427, 157 (2006).

[42] Y. V. Sharvin, A Possible Method for Studying Fermi Surfaces, Soviet Journal of Experimental and Theoretical Physics 21, 655 (1965).

[43] S. Murakami, N. Nagaosa, and S. C. Zhang, Dissipationless quantum spin cur-rent at room temperature, Science 301, 1348 (2003).

[44] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDon- ald, Universal intrinsic spin Hall effect, Phys. Rev. Lett. 92, 126603 (2004).

[45] Y. Kato, R. Myers, A. Gossard, and D. Awschalom, Observation of the spin Hall effect in semiconductors, Science 306, 1910 (2004).

[46] J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Experimental obser- vation of the spin-Hall effect in a two-dimensional spin-orbit coupled semicon- ductor system, Phys. Rev. Lett. 94, 047204 (2005).

[47] M. I. D’Yakonov and V. I. Perel’, Possibility of Orienting Electron Spins with Current, Soviet Journal of Experimental and Theoretical Physics Letters 13, 467 (1971).

[48] M. V. Berry, Quantal Phase-Factors Accompanying Adiabatic Changes, Pro- ceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 392, 45 (1984).

[49] G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B 59, 14915 (1999).

[50] Y. Niimi, M. Morota, D. H. Wei, C. Deranlot, M. Basletic, A. Hamzic, A. Fert, and Y. Otani, Extrinsic Spin Hall Effect Induced by Iridium Impurities in Copper, Phys. Rev. Lett. 106, 126601 (2011).

[51] M. Isasa, E. Villamor, L. E. Hueso, M. Gradhand, and F. Casanova, Temperature dependence of spin diffusion length and spin Hall angle in Au and Pt, Phys. Rev. B 91, 024402 (2015).

[52] R. Ramaswamy, Y. Wang, M. Elyasi, M. Motapothula, T. Venkatesan, X. Qiu, and H. Yang, Extrinsic Spin Hall Effect in Cu1−xPtx, Phys. Rev. Applied 8, 024034 (2017).

[53] Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S. T. B. Goennenwein, E. Saitoh, and G. E. W. Bauer, Theory of spin Hall magnetoresistance, Phys. Rev. B 87, 144411 (2013).

[54] V. P. Amin and M. D. Stiles, Spin transport at interfaces with spin-orbit cou- pling: Phenomenology, Phys. Rev. B 94, 104420 (2016).

[55] L. Onsager, Reciprocal Relations in Irreversible Processes. I., Phys. Rev. 37, 405 (1931).

[56] S. Zhang, P. M. Levy, and A. Fert, Mechanisms of Spin-Polarized Current-Driven Magnetization Switching, Phys. Rev. Lett. 88, 236601 (2002).

[57] P. C. van Son, H. van Kempen, and P. Wyder, Boundary Resistance of the Ferromagnetic-Nonferromagnetic Metal Interface, Phys. Rev. Lett. 58, 2271 (1987).

[58] S. LaShell, B. A. McDougall, and E. Jensen, Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy, Phys. Rev. Lett. 77, 3419 (1996).

[59] G. Nicolay, F. Reinert, S. Hu¨fner, and P. Blaha, Spin-orbit splitting of the L-gap surface state on Au(111) and Ag(111), Phys. Rev. B 65, 033407 (2001).

[60] M. Hoesch, M. Muntwiler, V. N. Petrov, M. Hengsberger, L. Patthey, M. Shi, M. Falub, T. Greber, and J. Osterwalder, Spin structure of the Shockley surface state on Au(111), Phys. Rev. B 69, 241401 (2004).

[61] L. Petersen and P. Hedeg˚ard, A simple tight-binding model of spin-orbit splitting of sp-derived surface states, Surf. Sci. 459, 49 (2000).

[62] P. Gambardella and I. M. Miron, Current-induced spin-orbit torques, Phil. Trans. R. Soc. A 369, 3175 (2011).

[63] J. M. Ziman, Principles of the Theory of Solids (Cambridge university press, ADDRESS, 1972).

[64] R. H. Silsbee, Spin-orbit induced coupling of charge current and spin polariza- tion, Journal of Physics: Condensed Matter 16, R179 (2004).

[65] K. Kondou, H. Tsai, H. Isshiki, and Y. Otani, Efficient spin current generation and suppression of magnetic damping due to fast spin ejection from nonmagnetic metal/indium-tin-oxide interfaces, APL Materials 6, 101105 (2018).

[66] J. C. Rojas-S´anchez, L. Vila, G. Desfonds, S. Gambarelli, J. P. Attan´e, J. M. De Teresa, C. Mag´en, and A. Fert, Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials, Nat. Commun. 4, 2944 (2013).

[67] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect, Appl. Phys. Lett. 88, 182509 (2006).

[68] E. Lesne, Y. Fu, S. Oyarzun, J. C. Rojas-S´anchez, D. C. Vaz, H. Naganuma, G. Sicoli, J. P. Attan´e, M. Jamet, E. Jacquet, J. M. George, A. Barth´el´emy, H. Jaffr`es, A. Fert, M. Bibes, and L. Vila, Highly efficient and tunable spin-to- charge conversion through Rashba coupling at oxide interfaces, Nat. Mater. 15, 1261 (2016).

[69] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev. 105, 1103 (2005).

[70] V. Tshitoyan, C. Ciccarelli, A. P. Mihai, M. Ali, A. C. Irvine, T. A. Moore, T. Jungwirth, and A. J. Ferguson, Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn, Phys. Rev. B 92, 214406 (2015).

[71] M. Brun, A. Berthet, and J. Bertolini, XPS, AES and Auger parameter of Pd and PdO, Journal of Electron Spectroscopy and Related Phenomena 104, 55 (1999).

[72] A. Baylet, P. Mar´ecot, D. Duprez, P. Castellazzi, G. Groppi, and P. Forzatti, In situ Raman and in situXRD analysis of PdO reduction and Pd ◦ oxidation supported on γ-Al2O3 catalyst under different atmospheres, Phys. Chem. Chem. Phys. 13, 4607 (2011).

[73] G. K. Reddy, C. Ling, T. C. Peck, and H. Jia, Understanding the chemical state of palladium during the direct NO decomposition – influence of pretreatment environment and reaction temperature, RSC Adv. 7, 19645 (2017).

[74] B. Post, X-ray diffraction procedures for polycrystalline and amorphous mate- rials. Harold P. Klug and Leroy E. Alexander, John Wiley & Sons, New York, 1974, pp. 960., X-Ray Spectrometry 4, A18 (1975).

[75] C.-F. Pai, Y. Ou, L. H. Vilela-Le˜ao, D. C. Ralph, and R. A. Buhrman, Dependence of the efficiency of spin Hall torque on the transparency of Pt/ferromagnetic layer interfaces, Phys. Rev. B 92, 064426 (2015).

[76] A. Ghosh, K. Garello, C. O. Avci, M. Gabureac, and P. Gambardella, Interface-Enhanced Spin-Orbit Torques and Current-Induced Magnetization Switching of Pd/Co/AlOx Layers, Phys. Rev. Applied 7, 014004 (2017).

[77] K. Kondou, H. Sukegawa, S. Mitani, K. Tsukagoshi, and S. Kasai, Evaluation of Spin Hall Angle and Spin Diffusion Length by Using Spin Current-Induced Ferromagnetic Resonance, Appl. Phys. Express 5, 073002 (2012).

[78] Z. Tang, Y. Kitamura, E. Shikoh, Y. Ando, T. Shinjo, and M. Shiraishi, Tem- perature Dependence of Spin Hall Angle of Palladium, Appl. Phys. Express 6, 083001 (2013).

[79] S. Onoda, N. Sugimoto, and N. Nagaosa, Quantum transport theory of anoma- lous electric, thermoelectric, and thermal Hall effects in ferromagnets, Phys. Rev. B 77, 165103 (2008).

[80] W. Zhang, W. Han, X. Jiang, S.-H. Yang, and S. S. Parkin, Role of transparency of platinum-ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect, Nat. Phys. (2015).

[81] Y. Liu, Z. Yuan, R. J. H. Wesselink, A. A. Starikov, M. van Schilfgaarde, and P. J. Kelly, Direct method for calculating temperature-dependent transport properties, Phys. Rev. B 91, 220405 (2015).

[82] J. C. Sankey, Y.-T. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Buhrman, and D. C. Ralph, Measurement of the spin-transfer-torque vector in magnetic tunnel junctions, Nature Physics 4, 67 (2008).

[83] G. Y. Guo, Ab initio calculation of intrinsic spin Hall conductivity of Pd and Au, Journal of Applied Physics 105, 07C701 (2009).

[84] C. Bai, S. Wei, D. Deng, X. Lin, M. Zheng, and Q. Dong, A nitrogen-doped nano carbon dodecahedron with Co@Co3O4 implants as a bi-functional electrocatalyst for efficient overall water splitting, J. Mater. Chem. A 5, 9533 (2017).

[85] H. Lee, J. Lim, C. Lee, S. Back, K. An, J. W. Shin, R. Ryoo, Y. Jung, and J. Y. Park, Boosting hot electron flux and catalytic activity at metal–oxide interfaces of PtCo bimetallic nanoparticles, Nat. Commun. 9, 2235 (2018).

[86] H. Jia, W. Zhu, Z. Xu, X. Nie, T. Liu, L. Gao, and J. Zhao, Precursor effects on structural ordering and electrochemical performances of Ni-rich layered LiNi0. 8Co0. 2O2 cathode materials for high-rate lithium ion batteries, Electrochim. Acta 266, 7 (2018).

[87] M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. Lau, A. R. Gerson, and R. S. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci. 257, 2717 (2011).

[88] D. Briggs, Handbook of X-ray Photoelectron Spectroscopy C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E.Muilenberg Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979. 190 pp., Surf. Interface Anal. 3, 78 (1981).

[89] Y. Nagai, M. Senda, and T. Toshima, XPS Investigations of Ni-Fe Alloy and Fe Films, Jpn. J. Appl. Phys. 26, L1131 (1987).

[90] M. S. Gabor, T. Petrisor, R. B. Mos, M. Nasui, C. Tiusan, and T. Petrisor, Inter- layer exchange coupling in perpendicularly magnetized Pt/Co/Ir/Co/Pt struc- tures, J. Phys. D: Appl. Phys. 50, 465004 (2017).

[91] L. Zhu, D. C. Ralph, and R. A. Buhrman, Spin-Orbit Torques in Heavy-Metal– Ferromagnet Bilayers with Varying Strengths of Interfacial Spin-Orbit Coupling, Phys. Rev. Lett. 122, 077201 (2019).

[92] T. Nan, S. Emori, C. T. Boone, X. Wang, T. M. Oxholm, J. G. Jones, B. M. Howe, G. J. Brown, and N. X. Sun, Comparison of spin-orbit torques and spin pumping across NiFe/Pt and NiFe/Cu/Pt interfaces, Phys. Rev. B 91, 214416 (2015).

[93] J.-C. Rojas-S´anchez, N. Reyren, P. Laczkowski, W. Savero, J.-P. Attan´e, C. Deranlot, M. Jamet, J.-M. George, L. Vila, and H. Jaffr`es, Spin Pumping and Inverse Spin Hall Effect in Platinum: The Essential Role of Spin-Memory Loss at Metallic Interfaces, Phys. Rev. Lett. 112, 106602 (2014).

[94] O. Mosendz, J. E. Pearson, F. Y. Fradin, S. D. Bader, and A. Hoffmann, Sup- pression of spin-pumping by a MgO tunnel-barrier, Appl. Phys. Lett. 96, 022502 (2010).

[95] H. Wang, C. Du, P. C. Hammel, and F. Yang, Antiferromagnonic Spin Transport from Y3Fe5O12 into NiO, Phys. Rev. Lett. 113, 097202 (2014).

[96] T. Ambrose and C. Chien, Dependence of exchange coupling on antiferromag-netic layer thickness in NiFe/CoO bilayers, J. Appl. Phys. 83, 6822 (1998).

[97] W. Lin, K. Chen, S. Zhang, and C. L. Chien, Enhancement of Thermally Injected Spin Current through an Antiferromagnetic Insulator, Phys. Rev. Lett. 116, 186601 (2016).

[98] T. Chatterji, G. J. McIntyre, and P.-A. Lindgard, Antiferromagnetic phase tran- sition and spin correlations in NiO, Phys. Rev. B 79, 172403 (2009).

[99] L. Frangou, S. Oyarzu´n, S. Auffret, L. Vila, S. Gambarelli, and V. Baltz, En- hanced Spin Pumping Efficiency in Antiferromagnetic IrMn Thin Films around the Magnetic Phase Transition, Phys. Rev. Lett. 116, 077203 (2016).

[100] K. Hasegawa, Y. Hibino, M. Suzuki, T. Koyama, and D. Chiba, Enhancement of spin-orbit torque by inserting CoOx layer into Co/Pt interface, Phys. Rev. B 98, 020405 (2018).

[101] C. Du, H. Wang, F. Yang, and P. C. Hammel, Systematic variation of spin-orbit coupling with d-orbital filling: Large inverse spin Hall effect in 3d transition metals, Phys. Rev. B 90, 140407 (2014).

[102] Y. Niimi and Y. Otani, Reciprocal spin Hall effects in conductors with strong spin-orbit coupling: a review, Rep. Prog. Phys. 78, 124501 (2015).

[103] L. Zhu, D. C. Ralph, and R. A. Buhrman, Effective Spin-Mixing Conductance of Heavy-Metal–Ferromagnet Interfaces, Phys. Rev. Lett. 123, 057203 (2019).

[104] P. M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, and M. D. Stiles, Current in- duced torques and interfacial spin-orbit coupling: Semiclassical modeling, Phys. Rev. B 87, 174411 (2013).

[105] M.-H. Nguyen, D. C. Ralph, and R. A. Buhrman, Spin torque study of the spin Hall conductivity and spin diffusion length in platinum thin films with varying resistivity, Phys. Rev. Lett. 116, 126601 (2016).

[106] H. Nakayama, T. Yamamoto, H. An, K. Tsuda, Y. Einaga, and K. Ando, Molec- ular engineering of Rashba spin-charge converter, Sci. Adv. 4, eaar3899 (2018).

[107] D. G. Castner, K. Hinds, and D. W. Grainger, X-ray Photoelectron Spectroscopy Sulfur 2p Study of Organic Thiol and Disulfide Binding Interactions with Gold Surfaces, Langmuir 12, 5083 (1996).

[108] E. O. Kane, Theory of Photoelectric Emission from Semiconductors, Phys. Rev. 127, 131 (1962).

[109] B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh, and P. W. M. Blom, Tuning of Metal Work Functions with Self-Assembled Monolayers, Adv. Mater. 17, 621 (2005).

[110] S. Dushenko, M. Hokazono, K. Nakamura, Y. Ando, T. Shinjo, and M. Shi- raishi, Tunable inverse spin Hall effect in nanometer-thick platinum films by ionic gating, Nat. Commun. 9, 3118 (2018).

[111] E. Sagasta, Y. Omori, M. Isasa, M. Gradhand, L. E. Hueso, Y. Niimi, Y. Otani, and F. Casanova, Tuning the spin Hall effect of Pt from the moderately dirty to the superclean regime, Phys. Rev. B 94, 060412 (2016).

[112] P. Fan, K. Yi, J.-D. Shao, and Z.-X. Fan, Electrical transport in metallic films, J. Appl. Phys. 95, 2527 (2004).

[113] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Nonlocal magnetization dynamics in ferromagnetic heterostructures, Rev. Mod. Phys. 77, 1375 (2005).

[114] K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara, H. Nakayama, T. Yoshino, K. Harii, Y. Fujikawa, M. Matsuo, S. Maekawa, and E. Saitoh, Inverse spin-Hall effect induced by spin pumping in metallic system, J. Appl. Phys. 109, 103913 (2011).

[115] G. Kresse and J. Furthmu¨ller, Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).

[116] C. Vericat, M. E. Vela, G. Corthey, E. Pensa, E. Cort´es, M. H. Fonticelli, F. Iba00F1ez, G. E. Benitez, P. Carro, and R. C. Salvarezza, Self-assembled monolayers of thiolates on metals: a review article on sulfur-metal chemistry and surface structures, RSC Adv. 4, 27730 (2014).

[117] J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard, and K. W. Jacobsen, Density functionals for surface sci- ence: Exchange-correlation model development with Bayesian error estimation, Phys. Rev. B 85, 235149 (2012).

[118] K. V. Shanavas, Z. S. Popovi´c, and S. Satpathy, Theoretical model for Rashba spin-orbit interaction in d electrons, Phys. Rev. B 90, 165108 (2014).

[119] G. Bihlmayer, Y. M. Koroteev, P. Echenique, E. Chulkov, and S. Blu¨gel, The Rashba-effect at metallic surfaces, Surf. Sci. 600, 3888 (2006).

[120] O. Krupin, G. Bihlmayer, K. Starke, S. Gorovikov, J. E. Prieto, K. D¨obrich, S. Blu¨gel, and G. Kaindl, Rashba effect at magnetic metal surfaces, Phys. Rev. B 71, 201403 (2005).

[121] M. Nagano, A. Kodama, T. Shishidou, and T. Oguchi, A first-principles study on the Rashba effect in surface systems, J. Phys. Condens. Matter 21, 064239 (2009).

[122] G. Bihlmayer, S. Blu¨gel, and E. V. Chulkov, Enhanced Rashba spin-orbit split- ting in Bi/Ag(111) and Pb/Ag(111) surface alloys from first principles, Phys. Rev. B 75, 195414 (2007).

[123] P. Z. Hanakata, A. S. Rodin, A. Carvalho, H. S. Park, D. K. Campbell, and A. H. Castro Neto, Two-dimensional square buckled Rashba lead chalcogenides, Phys. Rev. B 96, 161401 (2017).

[124] S. Sanvito, Molecular spintronics: The rise of spinterface science, Nat. Phys. 6, 562 (2010).

[125] M. Cinchetti, V. A. Dediu, and L. E. Hueso, Activating the molecular spinter- face, Nat. Mater. 16, 507 (2017).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る