リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Detection of magnetic fluctuations in chiral helimagnet CrNb3S6 thin films via pure spin current」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Detection of magnetic fluctuations in chiral helimagnet CrNb3S6 thin films via pure spin current

鈴木, 将太 大阪大学

2022.03.24

概要

電流は電子とスピンという二つの自由度を持つ。電荷の流れである電流に対し、スピン角運動量の流れをスピン流という。その中でも電流を伴わないスピン角運動量のみの流れである「純スピン流」は、ジュール熱を発生しないことから、低消費電力素子への応用が期待されている。純スピン流は、スピンホール効果によって電流との相互変換が可能である。近年、磁性体においてスピンホール効果を測定することで、磁性体中の微小な磁気ゆらぎを検出できることが報告された。本研究では、スピンがらせん状に配列するカイラルらせん磁性体に着目した。カイラルらせん磁性体では、らせん軸に垂直に磁場Hを印加することで、らせんの周期L(H)が長くなっていく特異な磁気状態が実現する。この磁気状態はカイラルソリトン格子(CSL)と呼ばれ、精力的に研究されているが、マクロな測定手法に限られ、局所的な磁気構造や磁気ダイナミクスについては未解明な点も多い。

本研究では、CSLの磁気ダイナミクスの解明を目指して、純スピン流を用いて磁気ゆらぎを検出することを目的とした。スピン流はナノメートルスケールで減衰するため、スピン輸送素子も同程度の大きさに加工する必要がある。そこで本研究では、カイラルらせん磁性体CrNb3S6に着目した。CrNb3S6は層状の結晶構造をとり、劈開性がある。この性質を利用して、機械的剥離法を用いてCrNb3S6を原子数十層の薄膜に加工する手法を確立した。作製したCrNb3S6薄膜をスピン輸送素子に組み込み、低温でスピン輸送測定を行った結果、磁気ゆらぎの電気的検出に成功した。CrNb3S6はH = 0においてらせん周期L(0) = 48 nmを持つが、本研究では2種類の膜厚tM < L(0)とtM > L(0)の場合についてスピン輸送測定を行った。

まず初めに、これらの薄膜にスピン流を注入し、スピンホール効果を測定した。温度を変えながら測定した結果、磁気転移温度近傍で信号が極大値を取った。さらに、tM > L(0)では転移温度近傍で信号の符号反転まで観測された。これらの結果は、従来の磁化測定では見られなかった、らせん磁性の磁気転移に伴う磁気ゆらぎを検出したことを示すものである。

次に非局所スピンバルブという手法を用いて、CrNb3S6中で、どの程度の距離でスピンが緩和するかを表すスピン拡散長を求めた。その結果、CrNb3S6のスピン緩和が、不純物・フォノン散乱によって引き起こされていることが分かった。

さらに、非局所スピンバルブの手法を応用し、磁場を印加することで、CrNb3S6薄膜の磁化反転する様子を観測した。tM < L(0)では、50 Oeという低磁場で薄膜の磁化が反転することが分かった。一方で、tM > L(0)の場合、50Oeから50 Oeにかけて徐々に磁化が反転する様子が観測された。これらは、CSLのらせん磁化の反転の様子を検出した初めての例である。

本研究で得られた成果は、CSLの磁気ダイナミクスの解明に寄与するだけでなく、CSLを用いた磁気デバイスへの応用にもつながる結果である。

参考文献

[1] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth. Spin Hall effects. Reviews of Modern Physics, 87:1213–1260, 2015.

[2] M. I. D’Yakonov and V. I. Perel’. Possibility of Orienting Electron Spins with Current. Soviet Journal of Experimental and Theoretical Physics Letters, 13:467, 1971.

[3] J. E. Hirsch. Spin Hall Effect. Physical Review Letters, 83:1834, 1999.

[4] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom. Observation of the Spin Hall Effect in Semiconductors. Science, 306(5703):1910–1913, 2004.

[5] D. H. Wei, Y. Niimi, B. Gu, T. Ziman, S. Maekawa, and Y. Otani. The spin Hall effect as a probe of nonlinear spin fluctuations. Nature Communications, 3(1):1058, 2012.

[6] P. K. Muduli, T. Higo, T. Nishikawa, D. Qu, H. Isshiki, K. Kondou, D. Nishio- Hamane, S. Nakatsuji, and Y. Otani. Evaluation of spin diffusion length and spin Hall angle of the antiferromagnetic Weyl semimetal mn3sn. Physical Re- view B, 99:184425, 2019.

[7] Y. Niimi, M. Kimata, Y. Omori, B. Gu, T. Ziman, S. Maekawa, A. Fert, and Y. Otani. Strong Suppression of the Spin Hall Effect in the Spin Glass State.Physical Review Letters, 115:196602, 2015.

[8] H. Taniguchi, M. Watanabe, T. Ibe, M. Tokuda, T. Arakawa, T. Taniguchi,B. Gu, T. Ziman, S. Maekawa, K. Kobayashi, and Y. Niimi. Spin treacle in a frustrated magnet observed with spin current. Physical Review B, 102:094405, 2020.

[9] I.E. Dzialoshinskii. Thermodynamic theory of “weak” ferromagnetism in anti- ferromagnetic substances. Soviet physics JETP, 5(6):1259–1272, 1957.

[10] I. E. Dzyaloshinsky. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. Journal of Physics and Chemistry of Solids, 4(4):241–255, 1958.

[11] T. Miyadai, K. Kikuchi, H. Kondo, S. Sakka, M. Arai, and Y. Ishikawa. Magnetic Properties of Cr1/3NbS2. Journal of the Physical Society of Japan, 52(4):1394–1401, 1983.

[12] I. Pilz, O. Glatter, and O. Kratky. [11] small-angle x-ray scattering. In En- zyme Structure Part H, volume 61 of Methods in Enzymology, pages 148–249. Academic Press, 1979.

[13] Y. Togawa, T. Koyama, K. Takayanagi, S. Mori, Y. Kousaka, J. Akimitsu,S. Nishihara, K. Inoue, A. S. Ovchinnikov, and J. Kishine. Chiral Magnetic Soliton Lattice on a Chiral Helimagnet. Physical Review Letters, 108:107202, 2012.

[14] A. Yoshimori. A New Type of Antiferromagnetic Structure in the Rutile Type Crystal. Journal of the Physical Society of Japan, 14(6):807–821, 1959.

[15] T. A. Kaplan. Classical Spin-Configuration Stability in the Presence of Com- peting Exchange Forces. Physical Review, 116:888–889, 1959.

[16] J. Villain. La structure des substances magnetiques. Journal of Physics and Chemistry of Solids, 11(3):303–309, 1959.

[17] I. E. Dzyaloshinskii. Theory of helicoidal structures in antiferromagnets. I. Non-metals. Soviet physics JETP, 19(4):960–971, 1964.

[18] T. H. R. Skyrme. A unified field theory of mesons and baryons. Nuclear Physics, 31:556–569, 1962.

[19] S. Mu¨hlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer,R. Georgii, and P. B¨oni. Skyrmion Lattice in a Chiral Magnet. Science, 323(5916):915–919, 2009.

[20] Y. Togawa, Y. Kousaka, K. Inoue, and J. Kishinr. Symmetry, Structure, and Dynamics of Monoaxial Chiral Magnets. Journal of the Physical Society of Japan, 85(11):112001, 2016.

[21] 岸根 順一郎. Through the Looking-Glass:物質科学とChirality. 日本物理学会誌, 72(5):294–295, 2016.

[22] L. Kelvin. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light. C. J. Clay and Sons, London, 1904.

[23] L. D. Barron. True and false chirality and parity violation. Chemical Physics Letters, 123(5):423–427, 1986.

[24] T. Moriya. Anisotropic Superexchange Interaction and Weak Ferromagnetism.Physical Review, 120:91–98, 1960.

[25] T. Moriya. New Mechanism of Anisotropic Superexchange Interaction. Physical Review Letters, 4:228–230, 1960.

[26] J. Kishine, K. Inoue, and Y. Yoshida. Synthesis, Structure and Magnetic Prop- erties of Chiral Molecule-Based Magnets. Progress of Theoretical Physics Sup- plement, 159:82–95, 2005.

[27] J. Kishine, I. G. Bostrem, A. S. Ovchinnikov, and Vl. E. Sinitsyn. Topological magnetization jumps in a confined chiral soliton lattice. Physical Review B, 89:014419, 2014.

[28] Y. Togawa, T. Koyama, Y. Nishimori, Y. Matsumoto, S. McVitie, D. Mc- Grouther, R. L. Stamps, Y. Kousaka, J. Akimitsu, S. Nishihara, K. Inoue, I. G. Bostrem, Vl. E. Sinitsyn, A. S. Ovchinnikov, and J. Kishine. Magnetic soliton confinement and discretization effects arising from macroscopic coherence in a chiral spin soliton lattice. Physical Review B, 92:220412, 2015.

[29] K. Momma and F. Izumi. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6):1272–1276, 2011.

[30] L. M. Volkova and D. V. Marinin. Role of structural factors in formation of chiral magnetic soliton lattice in Cr1/3NbS2. Journal of Applied Physics, 116(13):133901, 2014.

[31] L. Wang, N. Chepiga, D. K. Ki, L. Li, F. Li, W. Zhu, Y. Kato, O. S. Ovchin- nikova, F. Mila, I. Martin, D. Mandrus, and A. F. Morpurgo. Controlling the Topological Sector of Magnetic Solitons in Exfoliated Cr1/3NbS2 Crystals. Physical Review Letters, 118:257203, 2017.

[32] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eti- enne, G. Creuzet, A. Friederich, and J. Chazelas. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 61:2472– 2475, 1988.

[33] G. Binasch, P. Gru¨nberg, F. Saurenbach, and W. Zinn. Enhanced magne- toresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B, 39:4828–4830, 1989.

[34] M. Johnson and R. H. Silsbee. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Physical Review Letters, 55:1790– 1793, 1985.

[35] F. J. Jedema, A. T. Filip, and B. J. van Wees. Electrical spin injection and ac- cumulation at room temperature in an all-metal mesoscopic spin valve. Nature, 410(6826):345–348, 2001.

[36] T. Kimura, J. Hamrle, and Y. Otani. Estimation of spin-diffusion length from the magnitude of spin-current absorption: Multiterminal ferromag- netic/nonferromagnetic hybrid structures. Physical Review B, 72:014461, 2005.

[37] T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa. Room- Temperature Reversible Spin Hall Effect. Physical Review Letters, 98:156601, 2007.

[38] L. Vila, T. Kimura, and Y. Otani. Evolution of the Spin Hall Effect in Pt Nanowires: Size and temperature Effects. Physical Review Letters, 99:226604, 2007.

[39] Y. Niimi and Y. Otani. Reciprocal spin Hall effects in conductors with strong spin–orbit coupling: a review. Reports on Progress in Physics, 78(12):124501, 2015.

[40] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Applied Physics Letters, 88(18):182509, 2006.

[41] S. O. Valenzuela and M. Tinkham. Direct electronic measurement of the spin Hall effect. Nature, 442(7099):176–179, 2006.

[42] S. Takahashi and S. Maekawa. Spin injection and detection in magnetic nanos- tructures. Physical Review B, 67:052409, 2003.

[43] S. Takahashi and S. Maekawa. Spin current, spin accumulation and spin Hall ef- fect. Science and Technology of Advanced Materials, 9(1):014105, 2008. PMID: 27877931.

[44] Y. Niimi, M. Morota, D. H. Wei, C. Deranlot, M. Basletic, A. Hamzic, A. Fert, and Y. Otani. Extrinsic Spin Hall Effect Induced by Iridium Impurities in Copper. Physical Review Letters, 106:126601, 2011.

[45] J. Kondo. Anomalous Hall Effect and Magnetoresistance of Ferromagnetic Metals. Progress of Theoretical Physics, 27(4):772–792, 1962.

[46] B. Gu, T. Ziman, and S. Maekawa. Theory of the spin Hall effect, and its inverse, in a ferromagnetic metal near the Curie temperature. Physical Review B, 86:241303, 2012.

[47] B. F. Miao, S. Y. Huang, D. Qu, and C. L. Chien. Inverse Spin Hall Effect in a Ferromagnetic Metal. Physical Review Letters, 111:066602, 2013.

[48] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh. Observation of the spin Seebeck effect. Nature, 455(7214):778– 781, 2008.

[49] S. M. Wu, J. Hoffman, J. E. Pearson, and A. Bhattacharya. Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect. Applied Physics Letters, 105(9):092409, 2014.

[50] D. Tian, Y. Li, D. Qu, S. Y. Huang, X. Jin, and C. L. Chien. Manipulation of pure spin current in ferromagnetic metals independent of magnetization. Physical Review B, 94:020403, 2016.

[51] J. D. Gibbons, D. MacNeill, R. A. Buhrman, and D. C. Ralph. Reorientable Spin Direction for Spin Current Produced by the Anomalous Hall Effect. Phys- ical Review Applied, 9:064033, 2018.

[52] M. Kimata, H. Chen, K. Kondou, S. Sugimoto, P. K. Muduli, M. Ikhlas,Y. Omori, T. Tomita, A. H. MacDonald, S. Nakatsuji, and Y. Otani. Mag- netic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature, 565(7741):627–630, 2019.

[53] V. Cannella and J. A. Mydosh. Magnetic Ordering in Gold-Iron Alloys. Physical Review B, 6:4220–4237, 1972.

[54] T. Taniguchi, H. Matsuyama, S. Chikazawa, and Y. Miyako. Linear and Non- Linear Susceptibilities in Canonical Spin Glass AuFe (1.5 at.%Fe). Journal of the Physical Society of Japan, 52(12):4323–4330, 1983.

[55] G. G. Kenning, J. M. Slaughter, and J. A. Cowen. Finite-Size Effects in a CuMn Spin-Glass. Physical Review Letters, 59:2596–2599, 1987.

[56] G. G. Kenning, J. Bass, W. P. Pratt, D. Leslie-Pelecky, L. Hoines, W. Leach,M. L. Wilson, R. Stubi, and J. A. Cowen. Finite-size effects in Cu-Mn spin glasses. Physical Review B, 42:2393–2415, 1990.

[57] R. J. Elliott. Theory of the Effect of Spin-Orbit Coupling on Magnetic Reso- nance in Some Semiconductors. Physical Review, 96:266–279, 1954.

[58] I. Zˇuti´c, J. Fabian, and S. Das Sarma. Spintronics: Fundamentals and applica- tions. Reviews of Modern Physics, 76:323–410, 2004.

[59] J. Fabian and S. D. Sarma. Spin relaxation of conduction electrons. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 17(4):1708–1715, 1999.

[60] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,I. V. Grigorieva, and A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696):666, 2004.

[61] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim. A roadmap for graphene. Nature, 490(7419):192–200, 2012.

[62] A. K. Geim and I. V. Grigorieva. Van der Waals heterostructures. Nature, 499(7459):419–425, 2013.

[63] J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, and Y. Arita,R. and Iwasa. Superconducting Dome in a Gate-Tuned Band Insulator. Science, 338(6111):1193, 2012.

[64] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single- layer MoS2 transistors. Nature Nanotechnology, 6(3):147–150, 2011.

[65] M. Yoshida, J. Ye, T. Nishizaki, N. Kobayashi, and Y. Iwasa. Electrostatic and electrochemical tuning of superconductivity in two-dimensional NbSe2 crystals. Applied Physics Letters, 108(20):202602, 2016.

[66] X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forr´o, J. Shan, and K. F. Mak. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nature Nanotechnol- ogy, 10(9):765–769, 2015.

[67] X. Xi, Z. Wang, W. Zhao, J. Park, K. T. Law, H. Berger, L. Forr´o, J. Shan, and K. F. Mak. Ising pairing in superconducting NbSe2 atomic layers. Nature Physics, 12(2):139–143, 2016.

[68] M. Yokoi, S. Fujiwara, T. Kawamura, T. Arakawa, K. Aoyama, H. Fukuyama,K. Kobayashi, and Y. Niimi. Negative resistance state in superconducting NbSe2 induced by surface acoustic waves. Science Advances, 6(34):eaba1377, 2020.

[69] M. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-Yamagishi, K. Watanabe,T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, and B. J. LeRoy. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Physics, 8(5):382–386, 2012.

[70] L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha- Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov,F. Guinea, V. I. Fal’ko, and A. K. Geim. Cloning of Dirac fermions in graphene superlattices. Nature, 497(7451):594–597, 2013.

[71] C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch,M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard,J. Hone, and P. Kim. Hofstadter’s butterfly and the fractal quantum Hall effect in moir´e superlattices. Nature, 497(7451):598–602, 2013.

[72] T. Iwasaki, K. Endo, E. Watanabe, D. Tsuya, Y. Morita, S. Nakaharai,Y. Noguchi, Y. Wakayama, K. Watanabe, T. Taniguchi, and S. Moriyama. Bubble-Free Transfer Technique for High-Quality Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. ACS Applied Materials & Interfaces, 12(7):8533–8538, 2020. PMID: 32027115.

[73] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 102(30):10451–10453, 2005.

[74] X. Wang, L. X. You, D. K. Liu, C. T. Lin, X. M. Xie, and M. H. Jiang. Thin- film-like BSCCO single crystals made by mechanical exfoliation. Physica C: Superconductivity, 474:13–17, 2012.

[75] S Suzuki, H Taniguchi, T Kawakami, M Cosset-Cheneau, T. Arakawa, S Miyasaka, S Tajima, Y. Niimi, and K Kobayashi. Electrical contacts to thin layers of Bi2Sr2CaCu2O8+δ. Applied Physics Express, 11(5):053201, 2018.

[76] S. Y. F. Zhao, N. Poccia, M. G. Panetta, C. Yu, J. W. Johnson, H. Yoo,R. Zhong, G. D. Gu, K. Watanabe, T. Taniguchi, S. V. Postolova, V. M. Vinokur, and P. Kim. Sign-Reversing Hall Effect in Atomically Thin High- Temperature Bi2.1Sr1.9CaCu2.0O8+δ Superconductors. Physical Review Letters, 122:247001, 2019.

[77] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang,Y. Wang, Z. Q. Qiu, R. J. Cava, Steven G. Louie, J. Xia, and X. Zhang. Dis- covery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 546(7657):265–269, 2017.

[78] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler,D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao,P. Jarillo-Herrero, and X. Xu. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 546(7657):270–273, 2017.

[79] Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu,J. Zhu, J. Wang, X. H. Chen, and Y. Zhang. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 563(7729):94–99, 2018.

[80] T. Ohta, K Sakai, H. Taniguchi, B. Driesen, Y. Okada, K. Kobayashi, and Y. Niimi. Enhancement of coercive field in atomically-thin quenched Fe5GeTe2.Applied Physics Express, 13(4):043005, 2020.

[81] H. Taniguchi, S. Suzuki, T. Arakawa, H. Yoshida, Y. Niimi, and K. Kobayashi. Fabrication of thin films of two-dimensional triangular antiferromagnet Ag2CrO2 and their transport properties. AIP Advances, 8(2):025010, 2018.

[82] H. Taniguchi, M. Watanabe, M. Tokuda, S. Suzuki, E. Imada, T. Ibe,T. Arakawa, H. Yoshida, H. Ishizuka, K. Kobayashi, and Y. Niimi. Butterfly- shaped magnetoresistance in triangular-lattice antiferromagnet Ag2CrO2. Sci- entific Reports, 10(1):2525, 2020.

[83] L. Berger. Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B, 54:9353–9358, 1996.

[84] J. C. Slonczewski. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159(1):L1–L7, 1996.

[85] T. Kimura, Y. Otani, and J. Hamrle. Switching Magnetization of a Nanoscale Ferromagnetic Particle Using Nonlocal Spin Injection. Physical Review Letters, 96:037201, 2006.

[86] R. Fujimura, R. Yoshimi, M. Mogi, A. Tsukazaki, M. Kawamura, K.S. Taka- hashi, M. Kawasaki, and Y. Tokura. Current-induced magnetization switching at charge-transferred interface between topological insulator (Bi,Sb)2Te3 and van der Waals ferromagnet Fe3GeTe2. Applied Physics Letters, 119(3):032402, 2021.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る