リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Immunosuppressive mesenchymal stem cells aggregates incorporating hydrogel microspheres promote an in vitro invasion of cancer cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Immunosuppressive mesenchymal stem cells aggregates incorporating hydrogel microspheres promote an in vitro invasion of cancer cells

Nii, Teruki Tabata, Yasuhiko 京都大学 DOI:10.1016/j.reth.2021.11.006

2021.12

概要

[Introduction] The objective of this study is to design a co-culture system of cancer cells and three-dimensional (3D) mesenchymal stem cells (MSC) aggregates for the in vitro evaluation of cancer invasion. [Methods] First, the MSC of an immunosuppressive phenotype (MSC2) were prepared by the MSC stimulation of polyriboinosinic polyribocytidylic acid. By simple mixing MSC2 and gelatin hydrogel microspheres (GM) in a U-bottomed well of 96 well plates which had been pre-coated with poly (vinyl alcohol), 3D MSC2 aggregates incorporating GM were obtained. The amount of chemokine (C–C motif) ligand 5 (CCL5) secreted from the MSC2 aggregates incorporating GM. Finally, an invasion assay was performed to evaluate the cancer invasion rate by co-cultured cancer cells and the 3D MSC2 incorporating GM. [Results] The amount of CCL5 secreted for the 3D MSC2 aggregates incorporating GM was significantly higher than that of two-dimensional (2D) MSC, 2D MSC2, and 3D MSC aggregates incorporating GM. When MDA-MB-231 human breast cancer cells were co-cultured with the 3D MSC2 aggregates incorporating GM, the invasion rate of cancer cells was significantly high compared with that of 2D MSC or 2D MSC2 and 3D MSC aggregates incorporating GM. In addition, high secretion of matrix metalloproteinase-2 was observed for the 3D MSC2 aggregates/cancer cells system. [Conclusions] It is concluded that the co-culture system of 3D MSC2 aggregates incorporating GM and cancer cells is promising to evaluate the invasion of cancer cells in vitro.

この論文で使われている画像

参考文献

[1] Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev

Immunol 2005;5:953e64. https://doi.org/10.1038/nri1733.

[2] Yoshimoto Y, Jo JI, Tabata Y. Preparation of antibody-immobilized gelatin

nanospheres incorporating a molecular beacon to visualize the biological

function of macrophages. Regen Ther 2020;14:11e8. https://doi.org/10.1016/

j.reth.2019.12.009.

[3] da Silva MD, Bobinski F, Sato KL, Kolker SJ, Sluka KA, Santos ARS. IL-10

cytokine released from M2 macrophages is crucial for analgesic and antiinflammatory effects of acupuncture in a model of inflammatory muscle

pain. Mol Neurobiol 2015;51:19e31. https://doi.org/10.1007/s12035-0148790-x.

[4] Momotori N, Jo JI, Tabata Y. Preparation of polymer microspheres capable for

pioglitazone release to modify macrophages function. Regen Ther 2019;11:

131e8. https://doi.org/10.1016/j.reth.2019.06.008.

[5] Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages

are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 2006;42:717e27. https://

doi.org/10.1016/j.ejca.2006.01.003.

[6] Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al.

Adenoma-linked barrier defects and microbial products drive IL-23/IL-17mediated tumour growth. Nature 2012;491:254e8. https://doi.org/10.1038/

nature11465.

[7] Tomita T, Sakurai Y, Ishibashi S, Maru Y. Imbalance of Clara cell-mediated

homeostatic inflammation is involved in lung metastasis. Oncogene

2011;30:3429e39. https://doi.org/10.1038/onc.2011.53.

520

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

T. Nii and Y. Tabata

Regenerative Therapy 18 (2021) 516e522

€ litz A, Von Jonquie

res G, Wolf[32] Eckstein N, Servan K, Hildebrandt B, Po

Kümmeth S, et al. Hyperactivation of the insulin-like growth factor receptor I

signaling pathway Is an essential event for cisplatin resistance of ovarian

cancer cells. Cancer Res 2009;69:2996e3003. https://doi.org/10.1158/00085472.CAN-08-3153.

[33] Neil JR, Johnson KM, Nemenoff RA, Schiemann WP. Cox-2 inactivates Smad

signaling and enhances EMT stimulated by TGF-b through a PGE2-dependent

mechanisms. Carcinogenesis 2008;29:2227e35. https://doi.org/10.1093/carcin/bgn202.

[34] Nii T, Kuwahara T, Makino K, Tabata Y. A co-culture system of threedimensional tumor-associated macrophages and three-dimensional cancerassociated fibroblasts combined with biomolecule release for cancer cell

migration. Tissue Eng - Part A 2020;26:1272e82. https://doi.org/10.1089/

ten.tea.2020.0095.

[35] Miyazaki K, Oyanagi J, Hoshino D, Togo S, Kumagai H, Miyagi Y. Cancer cell

migration on elongate protrusions of fibroblasts in collagen matrix. Sci Rep

2019;9:1e15. https://doi.org/10.1038/s41598-018-36646-z.

[36] Liu W, Song J, Du X, Zhou Y, Li Y, Li R, et al. AKR1B10 (Aldo-keto reductase

family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ

microfluidic chip model. Acta Biomater 2019;91:195e208. https://doi.org/

10.1016/j.actbio.2019.04.053.

[37] Mazio C, Casale C, Imparato G, Urciuolo F, Netti PA. Recapitulating spatiotemporal tumor heterogeneity in vitro through engineered breast cancer

microtissues. Acta Biomater 2018;73:236e49. https://doi.org/10.1016/

j.actbio.2018.04.028.

[38] Anada T, Fukuda J, Sai Y, Suzuki O. An oxygen-permeable spheroid culture

system for the prevention of central hypoxia and necrosis of spheroids. Biomaterials 2012;33:8430e41. https://doi.org/10.1016/j.biomaterials.2012.

08.040.

[39] Pedraza E, Coronel MM, Fraker CA, Ricordi C, Stabler CL. Preventing hypoxiainduced cell death in beta cells and islets via hydrolytically activated, oxygengenerating biomaterials. Proc Natl Acad Sci U S A 2012;109:4245e50. https://

doi.org/10.1073/pnas.1113560109.

[40] Patil PS, Mansouri M, Leipzig ND. Fluorinated chitosan microgels to overcome

internal oxygen transport deficiencies in microtissue culture systems. Adv

Biosyst 2020;1900250:1e10. https://doi.org/10.1002/adbi.201900250.

[41] Lv D, Yu SC, Ping YF, Wu H, Zhao X, Zhang H, et al. A three-dimensional

collagen scaffold cell culture system for screening anti-glioma therapeutics.

Oncotarget 2016;7:56904e14. https://doi.org/10.18632/oncotarget.10885.

[42] Reynolds DS, Tevis KM, Blessing WA, Colson YL, Zaman MH, Grinstaff MW.

Breast cancer spheroids reveal a differential cancer stem cell response to

chemotherapeutic treatment. Sci Rep 2017;7:1e12. https://doi.org/10.1038/

s41598-017-10863-4.

[43] DelNero P, Lane M, Verbridge SS, Kwee B, Kermani P, Hempstead B, et al. 3D

culture broadly regulates tumor cell hypoxia response and angiogenesis via

pro-inflammatory pathways. Biomaterials 2015;55:110e8. https://doi.org/

10.1016/j.biomaterials.2015.03.035.

[44] Baker AEG, Tam RY, Shoichet MS. Independently tuning the biochemical and

mechanical properties of 3D hyaluronan-based hydrogels with oxime and

diels-alder chemistry to culture breast cancer spheroids. Biomacromolecules

2017;18:4373e84. https://doi.org/10.1021/acs.biomac.7b01422.

[45] Huang YJ, Hsu SH. Acquisition of epithelial-mesenchymal transition and

cancer stem-like phenotypes within chitosan-hyaluronan membrane-derived

3D tumor spheroids. Biomaterials 2014;35:10070e9. https://doi.org/10.1016/

j.biomaterials.2014.09.010.

[46] Moriyama K, Naito S, Wakabayashi R, Goto M, Kamiya N. Enzymatically prepared redox-responsive hydrogels as potent matrices for hepatocellular carcinoma cell spheroid formation. Biotechnol J 2016;11:1452e60. https://

doi.org/10.1002/biot.201600087.

[47] Yang X, Sarvestani SK, Moeinzadeh S, He X, Jabbari E. Three-dimensionalengineered matrix to study cancer stem cells and tumorsphere formation:

effect of matrix modulus. Tissue Eng - Part A 2013;19:669e84. https://doi.org/

10.1089/ten.tea.2012.0333.

[48] Pradhan S, Clary JM, Seliktar D, Lipke EA. A three-dimensional spheroidal

cancer model based on PEG-fibrinogen hydrogel microspheres. Biomaterials

2017;115:141e54. https://doi.org/10.1016/j.biomaterials.2016.10.052.

[49] Nii T, Takeuchi I, Kimura Y, Makino K. Effects of the conformation of PLGA

molecules in the organic solvent on the aerodynamic diameter of spray dried

microparticles. Colloids Surfaces A Physicochem Eng Asp 2018;539:347e53.

https://doi.org/10.1016/j.colsurfa.2017.12.042.

[50] Hinderer S, Layland SL, Schenke-Layland K. ECM and ECM-like materials biomaterials for applications in regenerative medicine and cancer therapy.

Adv Drug Deliv Rev 2016;97:260e9. https://doi.org/10.1016/j.addr.2015.

11.019.

[51] Nii T, Katayama Y. Biomaterial-assisted regenerative medicine. Int J Mol Sci

2021;22:1e18. https://doi.org/10.3390/ijms22168657.

[52] Matsuo T, Masumoto H, Tajima S, Ikuno T, Katayama S, Minakata K, et al.

Efficient long-term survival of cell grafts after myocardial infarction with thick

viable cardiac tissue entirely from pluripotent stem cells. Sci Rep 2015;5:

1e14. https://doi.org/10.1038/srep16842.

[53] Bello AB, Kim D, Kim D, Park H, Lee SH. Engineering and functionalization of

gelatin biomaterials: from cell culture to medical applications. Tissue Eng Part B Rev 2020;26:164e80. https://doi.org/10.1089/ten.teb.2019.0256.

[54] Nakamura K, Saotome T, Shimada N, Matsuno K, Tabata Y. A gelatin hydrogel

nonwoven fabric facilitates metabolic activity of multilayered cell sheets.

[8] Barcellos-de-Souza P, Gori V, Bambi F, Chiarugi P. Tumor microenvironment:

bone marrow-mesenchymal stem cells as key players. Biochim Biophys Acta

Rev Cancer 2013;1836:321e35. https://doi.org/10.1016/j.bbcan.2013.10.004.

[9] Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal

stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an

immunosuppressive MSC2 phenotype. PLoS One 2010;5. https://doi.org/

10.1371/journal.pone.0010088.

[10] Waterman RS, Henkle SL, Betancourt AM. Mesenchymal stem cell 1 (MSC1)Based therapy attenuates tumor growth whereas MSC2-treatment promotes

tumor growth and metastasis. PLoS One 2012;7. https://doi.org/10.1371/

journal.pone.0045590.

[11] Nii T, Makino K, Tabata Y. Three-dimensional culture system of cancer cells

combined with biomaterials for drug screening. Cancers (Basel) 2020;12:

1e24. https://doi.org/10.3390/cancers12102754.

 Costa R, Gomes-Alves P, Aspegren A, et al.

[12] Abecasis B, Aguiar T, Arnault E,

Expansion of 3D human induced pluripotent stem cell aggregates in bioreactors: bioprocess intensification and scaling-up approaches. J Biotechnol

2017;246:81e93. https://doi.org/10.1016/j.jbiotec.2017.01.004.

[13] Nii T, Makino K, Tabata Y. Influence of shaking culture on the biological

functions of cell aggregates incorporating gelatin hydrogel microspheres.

J Biosci Bioeng 2019;128:606e12. https://doi.org/10.1016/j.jbiosc.2019.

04.013.

[14] Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as

in vitro models to mimic in vivo human solid tumors resistance to therapeutic

drugs. Biotechnol Bioeng 2019;116:206e26. https://doi.org/10.1002/

bit.26845.

[15] Brüningk SC, Rivens I, Box C, Oelfke U, Ter Haar G. 3D tumour spheroids for

the prediction of the effects of radiation and hyperthermia treatments. Sci Rep

2020;10:1e13. https://doi.org/10.1038/s41598-020-58569-4.

[16] Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human

biology and medicine. Nat Rev Mol Cell Biol 2020;21:571e84. https://doi.org/

10.1038/s41580-020-0259-3.

[17] Lancaster MA, Huch M. Disease modelling in human organoids. DMM Dis

Model Mech 2019;12. https://doi.org/10.1242/dmm.039347.

[18] Driehuis E, Kretzschmar K, Clevers H. Establishment of patient-derived cancer

organoids for drug-screening applications. Nat Protoc 2020;15:3380e409.

https://doi.org/10.1038/s41596-020-0379-4.

[19] Fukuda J, Sakai Y, Nakazawa K. Novel hepatocyte culture system developed

using microfabrication and collagen/polyethylene glycol microcontact printing. Biomaterials 2006;27:1061e70. https://doi.org/10.1016/j.biomaterials.

2005.07.031.

rez JC, Avile

s-Salas A, Marín-Hern

[20] Rodríguez-Enríquez S, Gallardo-Pe

andez A,

~ o-Fuentes L, Maldonado-Lagunas V, et al. Energy metabolism transition

Carren

in multi-cellular human tumor spheroids. J Cell Physiol 2008;216:189e97.

https://doi.org/10.1002/jcp.21392.

[21] Lin RZ, Chang HY. Recent advances in three-dimensional multicellular

spheroid culture for biomedical research. Biotechnol J 2008;3:1172e84.

https://doi.org/10.1002/biot.200700228.

[22] Nii T, Makino K, Tabata Y. A cancer invasion model of cancer-associated fibroblasts aggregates combined with TGF-b1 release system. Regen Ther

2020;14:196e204. https://doi.org/10.1016/j.reth.2020.02.003.

[23] Kellner K, Liebsch G, Klimant I, Wolfbeis OS, Blunk T, Schulz MB, et al.

Determination of oxygen gradients in engineered tissue using a fluorescent

sensor. Biotechnol Bioeng 2002;80:73e83. https://doi.org/10.1002/bit.10352.

~ V, Guzma

n J, Riande E. A potentiostatic study of oxygen trans[24] Compan

missibility and permeability through hydrogel membranes. Biomaterials

1998;19:2139e45. https://doi.org/10.1016/S0142-9612(98)00113-6.

[25] Hayashi K, Tabata Y. Preparation of stem cell aggregates with gelatin microspheres to enhance biological functions. Acta Biomater 2011;7:2797e803.

https://doi.org/10.1016/j.actbio.2011.04.013.

[26] Tajima S, Tabata Y. Preparation of epithelial cell aggregates incorporating

matrigel microspheres to enhance proliferation and differentiation of

epithelial cells. Regen Ther 2017;7:34e44. https://doi.org/10.1016/

j.reth.2017.07.001.

[27] Desai SD, Reed RE, Burks J, Wood LM, Pullikuth AK, Haas AL, et al. ISG15

disrupts cytoskeletal architecture and promotes motility in human breast

cancer cells. Exp Biol Med 2012;237:38e49. https://doi.org/10.1258/

ebm.2011.011236.

[28] Nii T, Makino K, Tabata Y. A cancer invasion model combined with cancerassociated fibroblasts aggregates incorporating gelatin hydrogel microspheres containing a p53 inhibitor. Tissue Eng - Part C Methods 2019;25:

711e20. https://doi.org/10.1089/ten.tec.2019.0189.

[29] Leung WH, Vong QP, Lin W, Janke L, Chen T, Leung W. Modulation of NKG2D

ligand expression and metastasis in tumors by spironolactone via RXRg

activation. J Exp Med 2013;210:2675e92. https://doi.org/10.1084/jem.

20122292.

[30] Chen Z, Zhang D, Yue F, Zheng M, Kovacevic Z, Richardson DR. The iron

chelators Dp44mT and DFO inhibit TGF-b-induced epithelial-mesenchymal

transition via up-regulation of N-Myc downstream-regulated gene 1

(NDRG1). J Biol Chem 2012;287:17016e28. https://doi.org/10.1074/

jbc.M112.350470.

[31] Nakayama K. CAMP-response element-binding protein (CREB) and NF-kB

transcription factors are activated during prolonged hypoxia and cooperatively regulate the induction of matrix metalloproteinase MMP1. J Biol Chem

2013;288:22584e95. https://doi.org/10.1074/jbc.M112.421636.

521

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

T. Nii and Y. Tabata

[55]

[56]

[57]

[58]

[59]

Regenerative Therapy 18 (2021) 516e522

[60] Chaicharoenaudomrung N, Kunhorm P, Noisa P. Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World

J Stem Cells 2019;11:1065e83. https://doi.org/10.4252/wjsc.v11.i12.1065.

[61] Desai PK, Tseng H, Souza GR. Assembly of hepatocyte spheroids using magnetic 3D cell culture for CYP450 inhibition/induction. Int J Mol Sci 2017;18.

https://doi.org/10.3390/ijms18051085.

[62] Nii T. Strategies using gelatin microparticles for regenerative therapy and

drug screening applications. Molecules 2021;26:1e10. https://doi.org/

10.3390/molecules26226795.

[63] Kawai K, Suzuki S, Tabata Y, Ikada Y, Nishimura Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated

gelatin microspheres into artificial dermis. Biomaterials 2000;21:489e99.

https://doi.org/10.1016/S0142-9612(99)00207-0.

[64] Mitsui R, Matsukawa M, Nakagawa K, Isomura E, Kuwahara T, Nii T, et al.

Efficient cell transplantation combining injectable hydrogels with control

release of growth factors. Regen Ther 2021;18:372e83. https://doi.org/

10.1016/j.reth.2021.09.003.

[65] Inoo K, Bando H, Tabata Y. Enhanced survival and insulin secretion of insulinoma cell aggregates by incorporating gelatin hydrogel microspheres. Regen

Ther 2018;8:29e37. https://doi.org/10.1016/j.reth.2017.12.002.

Tissue Eng - Part C Methods 2019;25:344e52. https://doi.org/10.1089/

ten.tec.2019.0061.

Tabata Y, Ikada Y. Protein release from gelatin matrices. Adv Drug Deliv Rev

1998;31:287e301. https://doi.org/10.1016/S0169-409X(97)00125-7.

Tabata Y, Ikada Y. Vascularization effect of basic fibroblast growth factor

released from gelatin hydrogels with different biodegradabilities. Biomaterials

1999;20:2169e75.

https://doi.org/10.1016/S0142-9612(99)

00121-0.

Tajima S, Tabata Y. Preparation and functional evaluation of cell aggregates

incorporating gelatin microspheres with different degradabilities. J Tissue Eng

Regen Med 2013;7:801e11. https://doi.org/10.1002/term.

Cave DD, Rizzo R, Sainz B, Gigli G, Del Mercato LL, Lonardo E. The revolutionary roads to study cellecell interactions in 3d in vitro pancreatic cancer

models. Cancers (Basel) 2021;13:1e19. https://doi.org/10.3390/cancers

13040930.

Peng WC, Logan CY, Fish M, Anbarchian T, Aguisanda F, Alvarez-Varela

A, et al.

Inflammatory cytokine TNFa promotes the long-term expansion of primary

hepatocytes in 3D culture. Cell 2018;175:1607e1619.e15. https://doi.org/

10.1016/j.cell.2018.11.012.

522

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る