リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Epidemiological surveillance and virological analyses of highly pathogenic H5N1 avian influenza viruses in Indonesia.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Epidemiological surveillance and virological analyses of highly pathogenic H5N1 avian influenza viruses in Indonesia.

今村, 剛朗 東京大学 DOI:10.15083/0002003293

2022.03.09

概要

Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype has been enzootic among avian species, and they have caused sporadic human cases with mortality rate of more than 50%. Although human HPAI H5N1 cases have been so far limited to those with close contact with infected poultry, there always exists a risk of HPAI H5N1 viruses causing human endemics and global pandemics, in case they acquire efficient replication and transmission capability among humans.

Highly pathogenic avian influenza H5N1 viruses have been circulating in Indonesia since 2003, and sporadic human H5N1 cases have been reported until 2017. However, there is no report on epidemiology and virological characteristics of currently circulating HPAI H5N1 viruses, and their potential of human endemic or pandemic is unknown. With the aim to elucidate the virological characteristics of currently circulating HPAI H5N1viruses in Indonesia, we have conducted epidemiological surveillance of poultry and swine in Indonesia between 2010 and 2016. Two distinct sub-clades of H5N1 viruses, clade 2.1.3 and clade 2.3.2.1d, were identified, and it was suspected that clade 2.3.2.1d strains had recently become dominant among poultry in Indonesia. Clade 2.3.2.1d strains revealed mammalian adaptive traits including higher viral polymerase activity and moderate replication capability in human lung epithelial cells, and high virulence in BALB/c mice. Our findings warranted further continuation of surveillance for HPAI H5N1 in Indonesia, in order to detect emergence of viruses possessing endemic or pandemic capability among humans.

Among analyzed Indonesian HPAI H5N1 viruses, we identified two genetically-close viruses with different characteristics; A/chicken/South Kalimantan/UT521/2010 (UT521) possessing higher replication efficiency in human lung epithelial cells and higher pathogenicity in BALB/c mice, while A/chicken/South Sulawesi/UT541/2010 possessing low replication efficiency and low pathogenicity. Further analysis of UT521 and UT541 strains revealed two amino acid mutations of viral polymerase binding protein 2 (PB2) which enhanced viral replication efficiency in human lung epithelial cells and pathogenicity in BALB/c mice. The mechanism of which these two PB2 amino acid mutations enhance virulence in mammalian hosts has not yet be elucidated, but our findings are beneficial for assessing the risk of avian-to-human transmission of highly pathogenic H5N1 avian influenza field isolates.

参考文献

1. Shaw, M. and P. Palese, Orthomyxoviridae, p 1151–1185. Fields virology. 2013, Lippincott Williams & Wilkins, Philadelphia, PA.

2. Wright, P., G. Neumann, and Y. Kawaoka, Orthomyxoviruses. Fields Virology, eds Knipe DM, et al. 2013, Lippincott Williams & Wilkins, Philadelphia, PA).

3. Osterhaus, A.D., G.F. Rimmelzwaan, B.E. Martina, T.M. Bestebroer, and R.A. Fouchier, Influenza B virus in seals. Science, 2000. 288(5468): p. 1051-3.

4. Bodewes, R., D. Morick, G. de Mutsert, N. Osinga, T. Bestebroer, S. van der Vliet, S.L. Smits, T. Kuiken, G.F. Rimmelzwaan, R.A. Fouchier, and A.D. Osterhaus, Recurring influenza B virus infections in seals. Emerg Infect Dis, 2013. 19(3): p. 511- 2.

5. Jelley, L., A. Levy, Y.M. Deng, N. Spirason, J. Lang, I. Buettner, J. Druce, C. Blyth, P. Effler, D. Smith, and I.G. Barr, Influenza C infections in Western Australia and Victoria from 2008 to 2014. Influenza Other Respir Viruses, 2016. 10(6): p. 455-461.

6. Matsuzaki, Y., K. Sugawara, C. Abiko, T. Ikeda, Y. Aoki, K. Mizuta, N. Katsushima, F. Katsushima, Y. Katsushima, T. Itagaki, Y. Shimotai, S. Hongo, Y. Muraki, and H. Nishimura, Epidemiological information regarding the periodic epidemics of influenza C virus in Japan (1996-2013) and the seroprevalence of antibodies to different antigenic groups. J Clin Virol, 2014. 61(1): p. 87-93.

7. Atkinson, K.V., L.A. Bishop, G. Rhodes, N. Salez, N.R. McEwan, M.J. Hegarty, J. Robey, N. Harding, S. Wetherell, R.M. Lauder, R.W. Pickup, M. Wilkinson, and D. Gatherer, Influenza C in Lancaster, UK, in the winter of 2014-2015. Sci Rep, 2017. 7: p. 46578.

8. Su, S., X. Fu, G. Li, F. Kerlin, and M. Veit, Novel Influenza D virus: Epidemiology, pathology, evolution and biological characteristics. Virulence, 2017. 8(8): p. 1580- 1591.

9. Hause, B.M., M. Ducatez, E.A. Collin, Z. Ran, R. Liu, Z. Sheng, A. Armien, B. Kaplan, S. Chakravarty, A.D. Hoppe, R.J. Webby, R.R. Simonson, and F. Li, Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C viruses. PLoS Pathog, 2013. 9(2): p. e1003176.

10. Neumann, G., H. Chen, G.F. Gao, Y. Shu, and Y. Kawaoka, H5N1 influenza viruses: outbreaks and biological properties. Cell Res, 2010. 20(1): p. 51-61.

11. Horimoto, T. and Y. Kawaoka, Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol, 2005. 3(8): p. 591-600.

12. Neumann, G., T. Noda, and Y. Kawaoka, Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 2009. 459(7249): p. 931-9.

13. Tong, S., Y. Li, P. Rivailler, C. Conrardy, D.A. Castillo, L.M. Chen, S. Recuenco, J.A. Ellison, C.T. Davis, I.A. York, A.S. Turmelle, D. Moran, S. Rogers, M. Shi, Y. Tao, M.R. Weil, K. Tang, L.A. Rowe, S. Sammons, X. Xu, M. Frace, K.A. Lindblade, N.J. Cox, L.J. Anderson, C.E. Rupprecht, and R.O. Donis, A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A, 2012. 109(11): p. 4269-74.

14. Tong, S., X. Zhu, Y. Li, M. Shi, J. Zhang, M. Bourgeois, H. Yang, X. Chen, S. Recuenco, J. Gomez, L.M. Chen, A. Johnson, Y. Tao, C. Dreyfus, W. Yu, R. McBride, P.J. Carney, A.T. Gilbert, J. Chang, Z. Guo, C.T. Davis, J.C. Paulson, J. Stevens, C.E. Rupprecht, E.C. Holmes, I.A. Wilson, and R.O. Donis, New world bats harbor diverse influenza A viruses. PLoS Pathog, 2013. 9(10): p. e1003657.

15. Webster, R.G., W.J. Bean, O.T. Gorman, T.M. Chambers, and Y. Kawaoka, Evolution and ecology of influenza A viruses. Microbiol Rev, 1992. 56(1): p. 152-79.

16. Swayne, D.E. and D.L. Suarez, Highly pathogenic avian influenza. Rev Sci Tech, 2000. 19(2): p. 463-82.

17. Horimoto, T. and Y. Kawaoka, Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev, 2001. 14(1): p. 129-49.

18. Horimoto, T. and Y. Kawaoka, Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol, 1994. 68(5): p. 3120-8.

19. Xu, X., Subbarao, N.J. Cox, and Y. Guo, Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology, 1999. 261(1): p. 15-9.

20. Claas, E.C., A.D. Osterhaus, R. van Beek, J.C. De Jong, G.F. Rimmelzwaan, D.A. Senne, S. Krauss, K.F. Shortridge, and R.G. Webster, Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet, 1998. 351(9101): p. 472- 7.

21. Subbarao, K., A. Klimov, J. Katz, H. Regnery, W. Lim, H. Hall, M. Perdue, D. Swayne, C. Bender, J. Huang, M. Hemphill, T. Rowe, M. Shaw, X. Xu, K. Fukuda, and N. Cox, Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science, 1998. 279(5349): p. 393-6.

22. Health), O.T.W.O.f.A., OIE Situation Report for Highly Pathogenic Avian Influenza. 2018.

23. Organization), W.W.H. Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO. 2018 [cited 2018 25, October, 2018]; Available from: https://www.who.int/influenza/human_animal_interface/2018_09_21_tableH5N1.pdf? ua=1.

24. Organization), W.W.H. H5N1 highly pathogenic avian influenza: Timeline of major events. 2014; Available from: https://www.who.int/influenza/human_animal_interface/H5N1_avian_influenza_upda te20141204.pdf.

25. Davis, A.S., D.S. Chertow, J.E. Moyer, J. Suzich, A. Sandouk, D.W. Dorward, C. Logun, J.H. Shelhamer, and J.K. Taubenberger, Validation of normal human bronchial epithelial cells as a model for influenza A infections in human distal trachea. J Histochem Cytochem, 2015. 63(5): p. 312-28.

26. Jakiela, B., R. Brockman-Schneider, S. Amineva, W.M. Lee, and J.E. Gern, Basal cells of differentiated bronchial epithelium are more susceptible to rhinovirus infection. Am J Respir Cell Mol Biol, 2008. 38(5): p. 517-23.

27. Neumann, G., T. Watanabe, H. Ito, S. Watanabe, H. Goto, P. Gao, M. Hughes, D.R. Perez, R. Donis, E. Hoffmann, G. Hobom, and Y. Kawaoka, Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A, 1999. 96(16): p. 9345-50.

28. Reed, L.J., A simple method of estimating fifty per cent endpoints. Am J Hyg., 1938. 27: p. 493-497.

29. Yamayoshi, S., S. Yamada, S. Fukuyama, S. Murakami, D. Zhao, R. Uraki, T. Watanabe, Y. Tomita, C. Macken, G. Neumann, and Y. Kawaoka, Virulence-affecting amino acid changes in the PA protein of H7N9 influenza A viruses. J Virol, 2014. 88(6): p. 3127-34.

30. Niwa, H., K. Yamamura, and J. Miyazaki, Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene, 1991. 108(2): p. 193-9.

31. Lin, Y.P., X. Xiong, S.A. Wharton, S.R. Martin, P.J. Coombs, S.G. Vachieri, E. Christodoulou, P.A. Walker, J. Liu, J.J. Skehel, S.J. Gamblin, A.J. Hay, R.S. Daniels, and J.W. McCauley, Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin. Proc Natl Acad Sci U S A, 2012. 109(52): p. 21474-9.

32. Kiso, M., K. Iwatsuki-Horimoto, S. Yamayoshi, R. Uraki, M. Ito, N. Nakajima, S. Yamada, M. Imai, E. Kawakami, Y. Tomita, S. Fukuyama, Y. Itoh, K. Ogasawara, T.J.S. Lopes, T. Watanabe, L.H. Moncla, H. Hasegawa, T.C. Friedrich, G. Neumann, and Y. Kawaoka, Emergence of Oseltamivir-Resistant H7N9 Influenza Viruses in Immunosuppressed Cynomolgus Macaques. J Infect Dis, 2017. 216(5): p. 582-593.

33. Yamayoshi, S., M. Watanabe, H. Goto, and Y. Kawaoka, Identification of a Novel Viral Protein Expressed from the PB2 Segment of Influenza A Virus. J Virol, 2016. 90(1): p. 444-56.

34. Network, T.W.H.O.G.I.P.S., Evolution of H5N1 avian influenza viruses in Asia. Emerg Infect Dis, 2005. 11(10): p. 1515-21.

35. Lam, T.T., C.C. Hon, O.G. Pybus, S.L. Kosakovsky Pond, R.T. Wong, C.W. Yip, F. Zeng, and F.C. Leung, Evolutionary and transmission dynamics of reassortant H5N1 influenza virus in Indonesia. PLoS Pathog, 2008. 4(8): p. e1000130.

36. Li, K.S., Y. Guan, J. Wang, G.J. Smith, K.M. Xu, L. Duan, A.P. Rahardjo, P. Puthavathana, C. Buranathai, T.D. Nguyen, A.T. Estoepangestie, A. Chaisingh, P. Auewarakul, H.T. Long, N.T. Hanh, R.J. Webby, L.L. Poon, H. Chen, K.F. Shortridge, K.Y. Yuen, R.G. Webster, and J.S. Peiris, Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature, 2004. 430(6996): p. 209-13.

37. Wibawa, H., D. Karo-Karo, E.S. Pribadi, A. Bouma, R. Bodewes, H. Vernooij, Diyantoro, A. Sugama, D.H. Muljono, G. Koch, F.S. Tjatur Rasa, and A. Stegeman, Exploring contacts facilitating transmission of influenza A(H5N1) virus between poultry farms in West Java, Indonesia: A major role for backyard farms? Prev Vet Med, 2018. 156: p. 8-15.

38. Takano, R., C.A. Nidom, M. Kiso, Y. Muramoto, S. Yamada, Y. Sakai-Tagawa, C. Macken, and Y. Kawaoka, Phylogenetic characterization of H5N1 avian influenza viruses isolated in Indonesia from 2003-2007. Virology, 2009. 390(1): p. 13-21.

39. Nidom, C.A., R. Takano, S. Yamada, Y. Sakai-Tagawa, S. Daulay, D. Aswadi, T. Suzuki, Y. Suzuki, K. Shinya, K. Iwatsuki-Horimoto, Y. Muramoto, and Y. Kawaoka, Influenza A (H5N1) viruses from pigs, Indonesia. Emerg Infect Dis, 2010. 16(10): p. 1515-23.

40. Organization), W.W.H. Influenza at the human-animal interface Summary and assessment, 25 July 2017 to 27 September 2017. 2017 25, October, 2018]; Available from: http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA _interface_09_27_2017.pdf?ua=1.

41. Neumann, G. and Y. Kawaoka, Host range restriction and pathogenicity in the context of influenza pandemic. Emerg Infect Dis, 2006. 12(6): p. 881-6.

42. Neumann, G., K. Shinya, and Y. Kawaoka, Molecular pathogenesis of H5N1 influenza virus infections. Antivir Ther, 2007. 12(4 Pt B): p. 617-26.

43. Rogers, G.N. and J.C. Paulson, Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology, 1983. 127(2): p. 361-73.

44. Auewarakul, P., O. Suptawiwat, A. Kongchanagul, C. Sangma, Y. Suzuki, K. Ungchusak, S. Louisirirotchanakul, H. Lerdsamran, P. Pooruk, A. Thitithanyanont, C. Pittayawonganon, C.T. Guo, H. Hiramatsu, W. Jampangern, S. Chunsutthiwat, and P. Puthavathana, An avian influenza H5N1 virus that binds to a human-type receptor. J Virol, 2007. 81(18): p. 9950-5.

45. Suzuki, Y., Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull, 2005. 28(3): p. 399-408.

46. Mair, C.M., K. Ludwig, A. Herrmann, and C. Sieben, Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection. Biochim Biophys Acta, 2014. 1838(4): p. 1153-68.

47. Yamada, S., Y. Suzuki, T. Suzuki, M.Q. Le, C.A. Nidom, Y. Sakai-Tagawa, Y. Muramoto, M. Ito, M. Kiso, T. Horimoto, K. Shinya, T. Sawada, M. Kiso, T. Usui, T. Murata, Y. Lin, A. Hay, L.F. Haire, D.J. Stevens, R.J. Russell, S.J. Gamblin, J.J. Skehel, and Y. Kawaoka, Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature, 2006. 444(7117): p. 378- 82.

48. Hatta, M., P. Gao, P. Halfmann, and Y. Kawaoka, Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science, 2001. 293(5536): p. 1840-2.

49. Li, Z., H. Chen, P. Jiao, G. Deng, G. Tian, Y. Li, E. Hoffmann, R.G. Webster, Y. Matsuoka, and K. Yu, Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol, 2005. 79(18): p. 12058-64.

50. Yamada, S., M. Hatta, B.L. Staker, S. Watanabe, M. Imai, K. Shinya, Y. Sakai1502 Tagawa, M. Ito, M. Ozawa, T. Watanabe, S. Sakabe, C. Li, J.H. Kim, P.J. Myler, I. Phan, A. Raymond, E. Smith, R. Stacy, C.A. Nidom, S.M. Lank, R.W. Wiseman, B.N. Bimber, D.H. O'Connor, G. Neumann, L.J. Stewart, and Y. Kawaoka, Biological and structural characterization of a host-adapting amino acid in influenza virus. PLoS Pathog, 2010. 6(8): p. e1001034.

51. Dharmayanti, N.L., R. Hartawan, H. Wibawa, A. Balish, R. Donis, C.T. Davis, and G. Samaan, Genetic characterization of clade 2.3.2.1 avian influenza A(H5N1) viruses, Indonesia, 2012. Emerg Infect Dis, 2014. 20(4): p. 671-4.

52. Dharmayanti, N., S.W. Thor, N. Zanders, R. Hartawan, A. Ratnawati, Y. Jang, M. Rodriguez, D.L. Suarez, G. Samaan, Pudjiatmoko, and C.T. Davis, Attenuation of highly pathogenic avian influenza A(H5N1) viruses in Indonesia following the reassortment and acquisition of genes from low pathogenicity avian influenza A virus progenitors. Emerg Microbes Infect, 2018. 7(1): p. 147.

53. Kumar, S., G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol, 2016. 33(7): p. 1870-4.

54. Kumar, S., M. Nei, J. Dudley, and K. Tamura, MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform, 2008. 9(4): p. 299-306.

55. Saitou, N. and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987. 4(4): p. 406-25.

56. Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985. 39(4): p. 783-791.

57. Tamura, K., M. Nei, and S. Kumar, Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A, 2004. 101(30): p. 11030-5.

58. World Health Organization/World Organisation for Animal, H.F. and H.N.E.W.G. Agriculture Organization, Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. Influenza Other Respir Viruses, 2014. 8(3): p. 384- 8.

59. Jiang, W., G. Hou, J. Li, C. Peng, S. Wang, and J. Chen, Novel variants of clade 2.3.2.1 H5N1 highly pathogenic avian influenza virus in migratory waterfowl of Hongze Lake. Vet Microbiol, 2017. 198: p. 99-103.

60. Fan, S., M. Hatta, J.H. Kim, P. Halfmann, M. Imai, C.A. Macken, M.Q. Le, T. Nguyen, G. Neumann, and Y. Kawaoka, Novel residues in avian influenza virus PB2 protein affect virulence in mammalian hosts. Nat Commun, 2014. 5: p. 5021.

61. Yang, Z.Y., C.J. Wei, W.P. Kong, L. Wu, L. Xu, D.F. Smith, and G.J. Nabel, Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science, 2007. 317(5839): p. 825-8.

62. Wang, W., B. Lu, H. Zhou, A.L. Suguitan, Jr., X. Cheng, K. Subbarao, G. Kemble, and H. Jin, Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol, 2010. 84(13): p. 6570-7.

63. Su, Y., H.Y. Yang, B.J. Zhang, H.L. Jia, and P. Tien, Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells. Arch Virol, 2008. 153(12): p. 2253-61.

64. Gao, Y., Y. Zhang, K. Shinya, G. Deng, Y. Jiang, Z. Li, Y. Guan, G. Tian, Y. Li, J. Shi, L. Liu, X. Zeng, Z. Bu, X. Xia, Y. Kawaoka, and H. Chen, Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog, 2009. 5(12): p. e1000709.

65. Imai, M., T. Watanabe, M. Hatta, S.C. Das, M. Ozawa, K. Shinya, G. Zhong, A. Hanson, H. Katsura, S. Watanabe, C. Li, E. Kawakami, S. Yamada, M. Kiso, Y. Suzuki, E.A. Maher, G. Neumann, and Y. Kawaoka, Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 2012. 486(7403): p. 420-8.

66. Shore, D.A., H. Yang, A.L. Balish, S.S. Shepard, P.J. Carney, J.C. Chang, C.T. Davis, R.O. Donis, J.M. Villanueva, A.I. Klimov, and J. Stevens, Structural and antigenic variation among diverse clade 2 H5N1 viruses. PLoS One, 2013. 8(9): p. e75209.

67. Sonnberg, S., R.J. Webby, and R.G. Webster, Natural history of highly pathogenic avian influenza H5N1. Virus Res, 2013. 178(1): p. 63-77.

68. Hidari, K.I., T. Murata, K. Yoshida, Y. Takahashi, Y.H. Minamijima, Y. Miwa, S. Adachi, M. Ogata, T. Usui, Y. Suzuki, and T. Suzuki, Chemoenzymatic synthesis, characterization, and application of glycopolymers carrying lactosamine repeats as entry inhibitors against influenza virus infection. Glycobiology, 2008. 18(10): p. 779- 88.

69. Ogata, M., K.I. Hidari, W. Kozaki, T. Murata, J. Hiratake, E.Y. Park, T. Suzuki, and T. Usui, Molecular design of spacer-N-linked sialoglycopolypeptide as polymeric inhibitors against influenza virus infection. Biomacromolecules, 2009. 10(7): p. 1894- 903.

70. Shimizu, K., L. Wulandari, E.D. Poetranto, R.A. Setyoningrum, R. Yudhawati, A. Sholikhah, A.M. Nastri, A.L. Poetranto, A.Y. Candra, E.F. Puruhito, Y. Takahara, Y. Yamagishi, M. Yamaoka, H. Hotta, T. Ustumi, M.I. Lusida, Soetjipto, Y.K. Shimizu, G. Soegiarto, and Y. Mori, Seroevidence for a High Prevalence of Subclinical Infection With Avian Influenza A(H5N1) Virus Among Workers in a Live-Poultry Market in Indonesia. J Infect Dis, 2016. 214(12): p. 1929-1936.

71. Le, M.Q., P. Horby, A. Fox, H.T. Nguyen, H.K. Le Nguyen, P.M. Hoang, K.C. Nguyen, M.D. de Jong, R.E. Jeeninga, H. Rogier van Doorn, J. Farrar, and H.F. Wertheim, Subclinical avian influenza A(H5N1) virus infection in human, Vietnam. Emerg Infect Dis, 2013. 19(10): p. 1674-7.

72. Robert, M., R. Holle du, V. Setiawaty, K.N. Pangesti, and E.R. Sedyaningsih, Seroprevalence of avian influenza A/H5N1 among poultry farmers in rural Indonesia, 2007. Southeast Asian J Trop Med Public Health, 2010. 41(5): p. 1095-103.

73. Neumann, G., C.A. Macken, A.I. Karasin, R.A. Fouchier, and Y. Kawaoka, Egyptian H5N1 influenza viruses-cause for concern? PLoS Pathog, 2012. 8(11): p. e1002932.

74. Watanabe, Y., M.S. Ibrahim, and K. Ikuta, Evolution and control of H5N1. A better understanding of the evolution and diversity of H5N1 flu virus and its host species in endemic areas could inform more efficient vaccination and control strategies. EMBO Rep, 2013. 14(2): p. 117-22.

75. Arafa, A.S., S. Yamada, M. Imai, T. Watanabe, S. Yamayoshi, K. Iwatsuki-Horimoto, M. Kiso, Y. Sakai-Tagawa, M. Ito, T. Imamura, N. Nakajima, K. Takahashi, D. Zhao, K. Oishi, A. Yasuhara, C.A. Macken, G. Zhong, A.P. Hanson, S. Fan, J. Ping, M. Hatta, T.J. Lopes, Y. Suzuki, M. El-Husseiny, A. Selim, N. Hagag, M. Soliman, G. Neumann, H. Hasegawa, and Y. Kawaoka, Risk assessment of recent Egyptian H5N1 influenza viruses. Sci Rep, 2016. 6: p. 38388.

76. Pflug, A., M. Lukarska, P. Resa-Infante, S. Reich, and S. Cusack, Structural insights into RNA synthesis by the influenza virus transcription-replication machine. Virus Res, 2017. 234: p. 103-117.

77. Boivin, S., S. Cusack, R.W. Ruigrok, and D.J. Hart, Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms. J Biol Chem, 2010. 285(37): p. 28411-7.

78. Eisfeld, A.J., E. Kawakami, T. Watanabe, G. Neumann, and Y. Kawaoka, RAB11A is essential for transport of the influenza virus genome to the plasma membrane. J Virol, 2011. 85(13): p. 6117-26.

79. Vignuzzi, M., J.K. Stone, J.J. Arnold, C.E. Cameron, and R. Andino, Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature, 2006. 439(7074): p. 344-8.

80. Lauring, A.S. and R. Andino, Quasispecies theory and the behavior of RNA viruses. PLoS Pathog, 2010. 6(7): p. e1001005.

81. Banerjee, I., Y. Yamauchi, A. Helenius, and P. Horvath, High-content analysis of sequential events during the early phase of influenza A virus infection. PLoS One, 2013. 8(7): p. e68450.

82. Killip, M.J., M. Smith, D. Jackson, and R.E. Randall, Activation of the interferon induction cascade by influenza a viruses requires viral RNA synthesis and nuclear export. J Virol, 2014. 88(8): p. 3942-52.

83. Amorim, M.-J., E.K. Read, R.M. Dalton, L. Medcalf, and P. Digard, Nuclear Export of Influenza A Virus mRNAs Requires Ongoing RNA Polymerase II Activity. Traffic, 2007. 8(1): p. 1-11.

84. Read, E.K.C. and P. Digard, Individual influenza A virus mRNAs show differential dependence on cellular NXF1/TAP for their nuclear export. Journal of General Virology, 2010. 91(5): p. 1290-1301.

85. Iwai, A., T. Shiozaki, T. Kawai, S. Akira, Y. Kawaoka, A. Takada, H. Kida, and T. Miyazaki, Influenza A virus polymerase inhibits type I interferon induction by binding to interferon beta promoter stimulator 1. J Biol Chem, 2010. 285(42): p. 32064-74.

86. Graef, K.M., F.T. Vreede, Y.F. Lau, A.W. McCall, S.M. Carr, K. Subbarao, and E. Fodor, The PB2 subunit of the influenza virus RNA polymerase affects virulence by interacting with the mitochondrial antiviral signaling protein and inhibiting expression of beta interferon. J Virol, 2010. 84(17): p. 8433-45.

87. Carr, S.M., E. Carnero, A. Garcia-Sastre, G.G. Brownlee, and E. Fodor, Characterization of a mitochondrial-targeting signal in the PB2 protein of influenza viruses. Virology, 2006. 344(2): p. 492-508.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る