リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dual-ion charge-discharge behaviors of Na-NiNc and NiNc-NiNc batteries」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dual-ion charge-discharge behaviors of Na-NiNc and NiNc-NiNc batteries

Hwang, Jinkwang Hagiwara, Rika Shinokubo, Hiroshi Shin, Ji-Young 京都大学 DOI:10.1039/D1MA00007A

2021.04.07

概要

Dual-ion sodium-organic secondary batteries were produced with anti-aromatic porphyrinoid, NiNc, as an active electrode material, which exhibited inherent charge-discharge behavior with high discharge capacity, high stability, and high Coulombic efficiency at high current density (132.6 mA h g⁻¹ discharge capacity and 99.4% efficiency at the 100th cycle with 1 A g⁻¹ of current density and 95.3 mA h g⁻¹ discharge capacity and 99.3% efficiency at the 100th cycle with 2 A g⁻¹ of current density).

この論文で使われている画像

参考文献

1 M. Armand and J.-M. Tarascon, Nature, 2008, 451, 652.

2 (a) A. R. Armstrong and P. G. Bruce, Nature, 1996, 381, 499;

(b) J. M. Tarascon and M. Armand, Nature, 2001, 414, 356;

(c) B. Scrosati, Nat. Nanotechnol., 2007, 2, 598; (d) H. Nishida

´, P. Bruce,

and K. Oyaizu, Science, 2008, 319, 737; (e) A. S. Arico

B. Scrosati, J.-M. Tarascon and W. V. Schalkwijk, Nat. Mater.,

2005, 4, 368; ( f ) T. Nokami, T. Matsuo, Y. Inatomi, N. Hojo,

T. Tsukagoshi, H. Yoshizawa, A. Shimizu, H. Kuramoto,

K. Komae, H. Tsuyama and J.-I. Yoshida, J. Am. Chem. Soc.,

2012, 134, 19694; (g) Y. Hanyu and I. Honma, Sci. Rep., 2012,

49, 453; (h) Z. Luo, L. Liu, Q. Zhao, F. Li and J. Chen,

Angew. Chem., 2017, 129, 12735 (Angew. Chem. Int. Ed.,

2017, 56, 12561); (i) Z. Song, T. Xu, M. L. Gordin, Y.-B. Jiang,

L.-T. Bae, Q. Ziao, H. Zhan, J. Liu and D. Wang, Nano Lett.,

2012, 12, 2205; ( j ) X. Li, Z. Hou, W. Huang, H.-S. Xu,

X. Wang, W. Yu, R. Li, K. Zhang, L. Wang, Z. Chen, K. Xie

and K. P. Loh, ACS Energy Lett., 2020, 5, 3498.

3 (a) J. M. Lee, G. Siingh, W. Cha, S. Kim, J. Yi, S.-J. Hwang and

A. Vinu, ACS Energy Lett., 2020, 5, 1939; (b) S. Komaba,

W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki,

T. Nakayama, A. Ogata, K. Gotoh and K. Fujiwara, Adv. Funct.

Mater., 2011, 21, 3859; (c) W. Wang, W. Li, S. Wang, Z. Miao,

H. K. Liu and S. Chou, J. Mater. Chem. A, 2018, 6, 6183;

(d) Y. Lee, S. M. Oh, B. Park, B. U. Ye, N.-S. Lee, J. M. Baik,

S.-J. Hwang and M. H. Kim, CrystEngComm, 2017, 19, 5028;

(e) S. M. Oh, I. Y. Kim, S. B. Patil, B. Park, J. M. Lee,

K. Adpakpang, S. A. Chae, O. H. Han and S.-J. Hwang,

ACS Appl. Mater. Interfaces, 2017, 9, 2249; ( f ) W. Cha,

I.-Y. Kim, J. M. Lee, S. Kim, K. Ramadass,

K. Gopalakrishnan, S. Premkumar, S. Umapathy and

A. Vinu, ACS Appl. Mater. Interfaces, 2019, 11, 27192;

2266 | Mater. Adv., 2021, 2, 2263–2266

View Article Online

Materials Advances

( g) S. Y. Lim, J. H. Lee, S. Kim, J. Shin, W. Choi,

K. Y. Chung, D. S. Jung and J. W. Choi, ACS Energy Lett.,

2017, 2, 998; (h) L. Wang, C. Wang, N. Zhang, F. Li, F. Cheng

and J. Chen, ACS Energy Lett., 2017, 2, 256; (i) J. Ni, L. Li and

J. Lu, J. Nanosci. Nanotechnol., 2010, 10, 21; ( j ) S. Nandal,

M. V. Lee, J. P. Hill, A. Vinu and K. Ariga, J. Nanosci.

Nanotechnol., 2010, 10, 21; (k) I. Y. Kim, S. Kim, X. Jin,

S. Premkumar, G. Chandra, N.-S. Lee, G. P. Mane, S.J. Hwang, S. Umapathy and A. Vinu, Angew. Chem., 2018,

130, 17381 (Angew. Chem., Int. Ed., 2018, 57, 17137);

(l ) B. Park, S. M. Oh, Y. K. Jo and S.-J. Hwang, Mater. Lett.,

2016, 178, 79; (m) B. Park, S. M. Oh and X. Jin, Chem. – Eur. J.,

2017, 23, 6544; (n) P. Xiong, R. Ma, N. Sakai,

L. Nurdiwijayanto and T. Sasaki, ACS Energy Lett., 2018,

3, 997; (o) Y. Shynkarenko, M. I. Bodnarchuk,

C. Benrnasconi, Y. Berezovska, V. Verteletskyi, S. T. Ochsenbein

and M. V. Kovalenko, ACS Energy Lett., 2020, 5, 2835;

(p) H. Wan, W. Weng, F. Han, L. Cai, C. Wang and X. Yao,

Nano Today, 2020, 33, 100860; (q) L. Yang, P. Wang, S. Zhang,

Y. Wang, L. Zang, H. Zhu, J. Yin and H. Y. Yang, J. Mater.

Chem. A, 2020, 8, 22791; (r) H. Wan, L. Cai, Y. Yao, W. Weng,

Y. Feng, J. P. Mwizerwa, G. Liu, Y. Yu and X. Yao, Small, 2020,

2001574; (s) M. Sheng, F. Zhang, B. Ji, X. Tong and Y. Tang,

Adv. Energy Mater., 2017, 7, 1601963; (t) D. Xie, M. Zhang,

L. Xiang and Y. Tang, Adv. Funct. Mater., 2020, 30, 1906770;

(u) A. Yu, Q. Pan, M. Zhang, D. Xie and Y. Tang, Adv. Funct.

Mater., 2020, 30, 2001440; (v) S. Mu, Q. Liu, P. Kidkhunthod,

X. Zhou, W. Wang and Y. Tang, Natl. Sci. Rev., 2020, DOI:

10.1093/nsr/nwaa178.

4 (a) H. Sun, Z. Cao, T. Wang, R. Lin, Y. Liu, L. Zhang, F. Lin,

Y. Huang and W. Luo, Mater. Today Energy, 2019, 13, 145;

(b) A. Manthiram, A. V. Murugan, A. Sarkar and

T.Muraliganth, Energy Environ. Sci., 2008, 1, 621; (c) Z. Wu,

S. Cui, Z. Zhuo, W. Yang, X. Wang and F. Pan, ACS Appl.

Mater. Interfaces, 2015, 7, 25105; (d) X. Liu, S. Wang, L. Wang,

K. Wang, X. Wu, P. Zhou, Z. Miao, Y. Zhao and S. Zhuo,

J. Power Sources, 2019, 438, 227017; (e) H. H. Sun, H.-H. Ryu,

U.-H. Kim, J. A. Weeks, A. Heller, Y.-K. Sun and C. B. Mullins,

ACS Energy Lett., 2020, 5, 1136.

5 T. Ito, Y. Hayashi, S. Shimizu, J.-Y. Shin, N. Kobayashi and

H. Shinokubo, Angew. Chem., 2012, 124, 8670 (Angew. Chem.

Int. Ed., 2012, 51, 8542).

6 J.-Y. Shin, T. Yamada, H. Yoshikawa, K. Awaga and

H. Shinokubo, Angew. Chem., 2014, 126, 3160 (Angew. Chem.

Int. Ed., 2014, 53, 3096).

© 2021 The Author(s). Published by the Royal Society of Chemistry

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る