リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Analyses of histone modification reprogramming and establishment of in vivo epigenome editing in medaka embryos」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Analyses of histone modification reprogramming and establishment of in vivo epigenome editing in medaka embryos

福嶋, 悠人 東京大学 DOI:10.15083/0002006723

2023.03.24

概要

論文審査の結果の要旨
氏名

福 嶋 悠 人

本論文は 2 章からなる。第 1 章はメダカ初期発生におけるヒストン修飾のリプログラミ
ング動態を定量的・網羅的解析した結果について述べられている。生殖細胞の個性を受精後
に消去し全能性・多能性を持つ胚を作る過程で、細胞の個性を担う要因の 1 つであるヒス
トン修飾は大規模に消去・再構成(リプログラミング)される。適切なリプログラミングは
正常発生にとって重要なことが知られているため、どのように種々のヒストン修飾がリプ
ログラミングされるかについては、脊椎動物全般で報告がある。初期発生様式が大きく異な
る哺乳類とそれ以外の脊椎動物ではリプログラミング動態が大きく異なることが示唆され
ていた。しかし受精直後での変化については、これまで技術的に解析が難しかったため、哺
乳類以外の脊椎動物での報告は限定的かつ断片的であった。また、哺乳類含め先行研究の手
法は定量性に乏しく、ごくわずかしか存在しない修飾を過大評価していた可能性があった。
これらの理由から、脊椎動物全体でのヒストン修飾のリプログラミング動態の共通性・種特
異性は不明であった。そこで論文提出者は、メダカを用いて受精後のヒストン修飾のリプロ
グラミング動態をレファレンスクロマチン(ゼブラフィッシュ由来)を入れた解析法で、網
羅的・定量的に評価した。その結果、程度の差はあるが、全てのタイプのヒストン修飾が受
精後に消去を受けることが明らかとなった。この結果とこれまでの報告を総合すると、ヒス
トン修飾がゲノムワイドに消去されない哺乳類と異なり、哺乳類以外の脊椎動物では共通
して修飾がゲノムワイドに消去されることが示唆された。同時に論文提出者は、リプログラ
ミングの過程で完全には消去されないヒストン修飾があることを新たに発見し、これらの
機能・メカニズムを明らかにした。さらに、他の生物と同じように魚類でもヒストン修飾の
一部(H3K27me3)が生殖細胞から胚へと伝わる可能性が新たに示唆された。
第 2 章はメダカ受精卵を用いた in vivo エピゲノム編集技術の確立について述べられてい
る。第 1 章ではヒストン修飾(H3K27me3)の世代間伝承の可能性が示唆されたが、正常発生
胚で観察されるような内在的な H3K27me3 標的領域では DNA 塩基配列依存性を完全には
排除できない。したがって、正常発生の観察だけでは生殖細胞での H3K27me3 蓄積と受精
後胚での H3K27me3 蓄積の因果関係を示すのは困難である。そこで論文提出者は、実験的
検証のために生殖細胞内で異所的・標的ゲノム領域特異的な H3K27me3 の導入が必要だと
判断した。また H3K27me3 は転写抑制と関連することが知られているものの、これまでの
先行研究では転写抑制が二次的に起こった可能性は否定できず、H3K27me3 蓄積と転写抑
制の直接の因果関係は不明であった。これらの理由から、論文提出者は受精卵を用いた生体
内(in vivo)標的ゲノム領域特異的な H3K27me3 導入を目指し、世界で初めてその技術を

1

確立した。また詳細な検証の結果、H3K27me3 を導入できないようなゲノム領域の特徴も
明らかにし、この技術の応用可の能性をより確かなものとした。さらに、これまで長い間議
論があった H3K27me3 蓄積と転写抑制の直接の因果関係を検証できることを実際に受精卵
でのエピゲノム編集を用いて示した点でも意義がある。
なお、本論文の第 1 章、第 2 章は、中村遼平・武田洋幸との共同研究であるが、論文提出
者が主体となって分析及び検証を行ったもので、論文提出者の寄与が十分であると判断す
る。
したがって、博士(理学)の学位を授与できると認める。

2

この論文で使われている画像

参考文献

1.

Miska, E. A. & Ferguson-Smith, A. C. Transgenerational inheritance: Models and

mechanisms of non-DNA sequence-based inheritance. Science 354, 59–63 (2016).

2.

Danchin, É. et al. Beyond DNA: Integrating inclusive inheritance into an extended

theory of evolution. Nature Reviews Genetics vol. 12 475–486 (2011).

3.

GURDON, J. B. The developmental capacity of nuclei taken from intestinal epithelium

cells of feeding tadpoles. J. Embryol. Exp. Morphol. 10, (1962).

4.

Thakore, P. I., Black, J. B., Hilton, I. B. & Gersbach, C. A. Editing the epigenome:

technologies for programmable transcription and epigenetic modulation. Nat.

Methods 13, 127–137 (2016).

5.

Zhou, V. W., Goren, A. & Bernstein, B. E. Charting histone modifications and the

functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011).

6.

Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in

mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

7.

Reinberg, D. & Vales, L. D. Chromatin domains rich in inheritance. Science (80-. ).

361, 33–34 (2018).

8.

Henikoff, S. & Greally, J. M. Epigenetics, cellular memory and gene regulation.

Current Biology vol. 26 R644–R648 (2016).

9.

D’Urso, A. & Brickner, J. H. Mechanisms of epigenetic memory. Trends in Genetics

vol. 30 230–236 (2014).

10.

Gangisetty, O. & Murugan, S. Epigenetic Modifications in Neurological Diseases:

Natural Products as Epigenetic Modulators a Treatment Strategy. in 1–25 (2016).

doi:10.1007/978-3-319-28383-8_1.

11.

Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: Myths and

mechanisms. Cell vol. 157 95–109 (2014).

12.

Perez, M. F. & Lehner, B. Intergenerational and transgenerational epigenetic

inheritance in animals. Nat. Cell Biol. 21, 143–151 (2019).

13.

Jablonka, E. & Raz, G. Transgenerational Epigenetic Inheritance: Prevalence,

Mechanisms, and Implications for the Study of Heredity and Evolution. Q. Rev. Biol.

84, 131–176 (2009).

14.

Landman, O. E. The Inheritance of Acquired Characteristics. Annu. Rev. Genet. 25,

1–20 (1991).

15.

Veenendaal, M. et al. Transgenerational effects of prenatal exposure to the 1944-45

Dutch famine. BJOG An Int. J. Obstet. Gynaecol. 120, 548–554 (2013).

55

16.

Waterland, R. A. & Jirtle, R. L. Transposable Elements: Targets for Early Nutritional

Effects on Epigenetic Gene Regulation. Mol. Cell. Biol. 23, 5293–5300 (2003).

17.

Duhl, D. M. J., Vrieling, H., Miller, K. A., Wolff, G. L. & Barsh, G. S. Neomorphic

agouti mutations in obese yellow mice. Nat. Genet. 8, 59–65 (1994).

18.

Tobi, E. W. et al. DNA methylation signatures link prenatal famine exposure to growth

and metabolism. Nat. Commun. 5, 5592 (2014).

19.

Feder, A., Nestler, E. J. & Charney, D. S. Psychobiology and molecular genetics of

resilience. Nat. Rev. Neurosci. 10, 446–457 (2009).

20.

Manning, K. et al. A naturally occurring epigenetic mutation in a gene encoding an

SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38, 948–952

(2006).

21.

Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural

variation in floral symmetry. Nature 401, 157–161 (1999).

22.

Teperek, M. et al. Sperm is epigenetically programmed to regulate gene transcription

in embryos. Genome Res. 26, 1034–1046 (2016).

23.

Siklenka, K. et al. Disruption of histone methylation in developing sperm impairs

offspring health transgenerationally. Science (80-. ). 350, aab2006–aab2006 (2015).

24.

Lesch, B. J. et al. Intergenerational epigenetic inheritance of cancer susceptibility in

mammals. Elife 8, (2019).

25.

Morgan, M. A. J. & Shilatifard, A. Reevaluating the roles of histone-modifying

enzymes and their associated chromatin modifications in transcriptional regulation.

Nat. Genet. 52, 1271–1281 (2020).

26.

Xia, W. & Xie, W. Rebooting the Epigenomes during Mammalian Early

Embryogenesis. Stem Cell Reports 15, 1158–1175 (2020).

27.

Fukushima, H. S., Takeda, H. & Nakamura, R. Targeted in vivo epigenome editing of

H3K27me3. Epigenetics Chromatin 12, 17 (2019).

28.

Ichikawa, K. et al. Centromere evolution and CpG methylation during vertebrate

speciation. Nat. Commun. 8, 1833 (2017).

29.

Qu, W. et al. Genome-wide genetic variations are highly correlated with proximal

DNA methylation patterns. Genome Res. 22, 1419–1425 (2012).

30.

Nakamura, R. et al. Large hypomethylated domains serve as strong repressive

machinery for key developmental genes in vertebrates. Development 141, 2568–

2580 (2014).

31.

Takeda, H. & Shimada, A. The Art of Medaka Genetics and Genomics: What Makes

56

Them So Unique? Annu. Rev. Genet. 44, 217–241 (2010).

32.

Bhandari, R. K. Medaka as a model for studying environmentally induced epigenetic

transgenerational inheritance of phenotypes. Environ. Epigenetics 2, (2016).

33.

Bhandari, R. K., vom Saal, F. S. & Tillitt, D. E. Transgenerational effects from early

developmental exposures to bisphenol A or 17α-ethinylestradiol in medaka, Oryzias

latipes. Sci. Rep. 5, 9303 (2015).

34.

Kungulovski, G. & Jeltsch, A. Epigenome Editing: State of the Art, Concepts, and

Perspectives. Trends in Genetics vol. 32 101–113 (2016).

35.

Steffen, P. A. & Ringrose, L. What are memories made of? How Polycomb and

Trithorax proteins mediate epigenetic memory. Nat. Rev. Mol. Cell Biol. 15, 340–356

(2014).

36.

Barnes, P. J., Adcock, I. M. & Ito, K. Histone acetylation and deacetylation:

Importance in inflammatory lung diseases. European Respiratory Journal vol. 25

552–563 (2005).

37.

Di Croce, L. & Helin, K. Transcriptional regulation by Polycomb group proteins. Nat.

Struct. Mol. Biol. 20, 1147–1155 (2013).

38.

Blackledge, N. P., Rose, N. R. & Klose, R. J. Targeting Polycomb systems to regulate

gene expression: modifications to a complex story. Nat. Rev. Mol. Cell Biol. 16, 643–

649 (2015).

39.

Cooper, S. et al. Targeting Polycomb to Pericentric Heterochromatin in Embryonic

Stem Cells Reveals a Role for H2AK119u1 in PRC2 Recruitment. Cell Rep. 7, 1456–

1470 (2014).

40.

Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives

PRC2 recruitment and polycomb domain formation. Cell 157, 1445–1459 (2014).

41.

Riising, E. M. et al. Gene silencing triggers polycomb repressive complex 2

recruitment to CpG Islands genome wide. Mol. Cell 55, 347–360 (2014).

42.

Schuettengruber, B., Bourbon, H.-M., Di Croce, L. & Cavalli, G. Genome Regulation

by Polycomb and Trithorax: 70 Years and Counting. Cell 171, 34–57 (2017).

43.

Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome

Regulation by Polycomb and Trithorax Proteins. Cell vol. 128 735–745 (2007).

44.

Xiao, J. et al. Cis and trans determinants of epigenetic silencing by Polycomb

repressive complex 2 in Arabidopsis. Nat. Genet. 49, 1546–1552 (2017).

45.

Laprell, F., Finkl, K. & Müller, J. Propagation of Polycomb-repressed chromatin

requires sequence-specific recruitment to DNA. Science (80-. ). 356, 85–88 (2017).

57

46.

Coleman, R. T. & Struhl, G. Causal role for inheritance of H3K27me3 in maintaining

the OFF state of a Drosophila HOX gene. Science (80-. ). 356, eaai8236 (2017).

47.

Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequencespecific control of gene expression. Cell 152, 1173–1183 (2013).

48.

Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase

activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

49.

Thakore, P. I. et al. Highly specific epigenome editing by CRISPR-Cas9 repressors

for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).

50.

Cano-Rodriguez, D. et al. Writing of H3K4Me3 overcomes epigenetic silencing in a

sustained but context-dependent manner. Nat. Commun. 7, 12284 (2016).

51.

Amabile, A. et al. Inheritable Silencing of Endogenous Genes by Hit-and-Run

Targeted Epigenetic Editing. Cell 167, 219-232.e14 (2016).

52.

Liu, X. S. et al. Editing DNA Methylation in the Mammalian Genome. Cell 167, 233247.e17 (2016).

53.

Morita, S. et al. Targeted DNA demethylation in vivo using dCas9–peptide repeat and

scFv–TET1 catalytic domain fusions. Nat. Biotechnol. 34, 1060–1065 (2016).

54.

Lin, S., Ewen-Campen, B., Ni, X., Housden, B. E. & Perrimon, N. In Vivo

Transcriptional Activation Using CRISPR/Cas9 in Drosophila. Genetics 201, 433–442

(2015).

55.

Jullien, J. et al. Gene Resistance to Transcriptional Reprogramming following Nuclear

Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways. Mol. Cell

65, 873-884.e8 (2017).

56.

Yamazaki, T. et al. Targeted DNA methylation in pericentromeres with genome

editing-based artificial DNA methyltransferase. PLoS One 12, e0177764 (2017).

57.

Maeder, M. L. et al. CRISPR RNA–guided activation of endogenous human genes.

Nat. Methods 10, 977–979 (2013).

58.

Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9–based

transcription factors. Nat. Methods 10, 973–976 (2013).

59.

Lindeman, L. C. et al. Prepatterning of Developmental Gene Expression by Modified

Histones before Zygotic Genome Activation. Dev. Cell 21, 993–1004 (2011).

60.

Aizawa, K., Shimada, A., Naruse, K., Mitani, H. & Shima, A. The medaka midblastula

transition as revealed by the expression of the paternal genome. Gene Expr. Patterns

3, 43–47 (2003).

61.

Delvecchio, M., Gaucher, J., Aguilar-Gurrieri, C., Ortega, E. & Panne, D. Structure of

58

the p300 catalytic core and implications for chromatin targeting and HAT regulation.

Nat. Struct. Mol. Biol. 20, 1040–1046 (2013).

62.

Tropberger, P. et al. Regulation of Transcription through Acetylation of H3K122 on

the Lateral Surface of the Histone Octamer. Cell 152, 859–872 (2013).

63.

Nakamura, R., Uno, A., Kumagai, M., Morishita, S. & Takeda, H. Hypomethylated

domain-enriched DNA motifs prepattern the accessible nucleosome organization in

teleosts. Epigenetics Chromatin 10, 44 (2017).

64.

Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian

cells. Nat Biotechnol 32, 670–676 (2014).

65.

Singh, R., Kuscu, C., Quinlan, A., Qi, Y. & Adli, M. Cas9-chromatin binding

information enables more accurate CRISPR off-target prediction. Nucleic Acids Res.

43, e118–e118 (2015).

66.

Brinkman, A. B. et al. Sequential ChIP-bisulfite sequencing enables direct genomescale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22,

1128–1138 (2012).

67.

Wu, H. et al. Dnmt3a-Dependent Nonpromoter DNA Methylation Facilitates

Transcription of Neurogenic Genes. Science (80-. ). 329, 444–448 (2010).

68.

Tie, F. et al. CBP-mediated acetylation of histone H3 lysine 27 antagonizes

Drosophila Polycomb silencing. Development 136, 3131–3141 (2009).

69.

O’Geen, H. et al. dCas9-based epigenome editing suggests acquisition of histone

methylation is not sufficient for target gene repression. Nucleic Acids Res. 45, 9901–

9916 (2017).

70.

Souroullas, G. P. et al. An oncogenic Ezh2 mutation induces tumors through global

redistribution of histone 3 lysine 27 trimethylation. Nat. Med. 22, 632–640 (2016).

71.

Ezponda, T. & Licht, J. D. Molecular pathways: Deregulation of histone H3 lysine 27

methylation in cancer - Different paths, same destination. Clin. Cancer Res. 20,

5001–5008 (2014).

72.

Iwamatsu, T. Stages of normal development in the medaka Oryzias latipes. Mech.

Dev. 121, 605–618 (2004).

73.

Notredame, C., Higgins, D. G. & Heringa, J. T-coffee: a novel method for fast and

accurate multiple sequence alignment 1 1Edited by J. Thornton. J. Mol. Biol. 302,

205–217 (2000).

74.

Stothard, P. The Sequence Manipulation Suite: JavaScript Programs for Analyzing

and Formatting Protein and DNA Sequences. Biotechniques 28, 1102–1104 (2000).

59

75.

Stemmer, M., Thumberger, T., Del Sol Keyer, M., Wittbrodt, J. & Mateo, J. L. CCTop:

An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10,

e0124633 (2015).

76.

Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas

system. Nat. Biotechnol. 31, 227–229 (2013).

77.

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina

sequence data. Bioinformatics 30, 2114–2120 (2014).

78.

Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler

transform. Bioinformatics 26, 589–595 (2010).

79.

Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137

(2008).

80.

Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing

genomic features. Bioinformatics 26, 841–842 (2010).

81.

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

82.

Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an

acquired metabolic disorder. Science (80-. ). 351, 397–400 (2016).

83.

Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm

maturation and fertilization in mammals. Science (80-. ). 351, 391–396 (2016).

84.

Wang, X., Song, X. & Bhandari, R. K. Distinct expression patterns of seven crucial

microRNAs during early embryonic development in medaka (Oryzias latipes). Gene

Expr. Patterns 37, 119133 (2020).

85.

Jiang, L. et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early

embryos. Cell 153, 773–784 (2013).

86.

Potok, M. E., Nix, D. A., Parnell, T. J. & Cairns, B. R. Reprogramming the maternal

zebrafish genome after fertilization to match the paternal methylation pattern. Cell

153, 759–772 (2013).

87.

Macleod, D., Clark, V. H. & Bird, A. Absence of genome-wide changes in DNA

methylation during development of the zebrafish. Nat. Genet. 23, 139–140 (1999).

88.

Veenstra, G. J. C. & Wolffe, A. P. Constitutive genomic methylation during embryonic

development of Xenopus. Biochim. Biophys. Acta - Gene Struct. Expr. 1521, 39–44

(2001).

89.

Murphy, P. J., Wu, S. F., James, C. R., Wike, C. L. & Cairns, B. R. Placeholder

Nucleosomes Underlie Germline-to-Embryo DNA Methylation Reprogramming. Cell

60

172, 993-998.e13 (2018).

90.

Cheung, N. K. M. et al. Unlinking the methylome pattern from nucleotide sequence,

revealed by large-scale in vivo genome engineering and methylome editing in

medaka fish. PLOS Genet. 13, e1007123 (2017).

61

Acknowledgements

First of all, I would like to express my deepest gratitude for my supervisor, Professor Hiroyuki

Takeda, and my mentor (or trainer), Dr. Ryohei Nakamura, for providing me with the

opportunity to study in a splendid environment. They allowed me to proceed my challenging

Ph.D. project as I want to do and brought me irreplaceable experiences. I owe my completion

of my Ph.D. course to their substantial supports, encouragement, and patients.

I would like to express my gratitude to Dr. Tetsuji Kakutani for helpful discussion

about epigenetic inheritance among diverse species and giving me insightful comments.

Without his help, I would not have achieved to obtain Ph.D.

I would like to acknowledge all the lab members for everyday discussions and for

their continuous supports. Especially, I am grateful to lab alumni, Dr. Yasuko Isoe, Dr. Napo

K. M. Cheung and Dr. Kota Abe. They taught me a lot, through daily communications, about

very basic but important things which I should know to achieve Ph.D. and to be a good

scientist.

In addition, I would like to thank all my friends in Department of Biological Sciences

for encouraging me when I faced difficulties and for giving me constructive comments and

suggestions.

I would like to offer my special thanks to Jean-Baptiste Lamarck and Paul Kammerer.

Their classical but intriguing ideas and experiments motivated me and took me into this field

of epigenetics and inheritance. Without their previous contributions to science, I would never

know such a fascinating world.

Finally, I owe my gratitude to my family. They believed in me and encouraged me all

the time. I would like to dedicate this doctoral thesis to them.

62

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る