リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「線虫C. elegansを用いた静水圧負荷に伴う生物応答の研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

線虫C. elegansを用いた静水圧負荷に伴う生物応答の研究

渡辺 尚 東北大学

2020.03.25

概要

1.1. 生理的に負荷される静水圧について
生物が活動する上で、からだの各組織や器官には様々な物理的な刺激が負荷されてい る。例えば、筋肉や心臓ではその収縮や伸展に伴う力が、血管の内皮では血流の流れに伴うシェアストレスが、骨格をはじめとする体全体には重力が絶えず負荷されている。これらの物理的な刺激や力は、それぞれの組織や器官の恒常性を維持、また、発達させる上で非常に重要な役割を担っている。逆に、病気に伴う寝たきり状態が長く続くことや宇宙飛行士が宇宙微小重力下に長期滞在することで、骨や筋の急速な萎縮、廃用性萎縮が生じ、様々な心身の機能低下を来すことが知られてきた(Barratt et al., 2008)。

メカノ刺激の 1 つである静水圧とは、静止している液体中の任意の面に作用する圧力 で全ての方向に対して等しい力が付与されている状態のことであり、深海の生き物など は、その深さと液体の密度に応じて全ての方向から均等に圧縮するような圧力(静水圧= 水圧)を受けている。人間のからだも、心臓から下に行くほど水圧が強くなり、手足の末端では最も静水圧が高い状態になっている。従って、長い時間にわたって立ち仕事をした際に、足がむくむ状態などは良く知られているが、この現象も毛細血管の内圧(血管静水圧)の上昇に起因するものといえる。

さらに、関節の軟骨組織は含水率が約 70% と高く剛性も有している(Montagne et al., 2017)ことから、主なメカノ刺激は静水圧の影響として捉えられることができる。すなわち、歩行や運動などの度にかかる加重は、軟骨組織の閉ざされた中では静水圧としての負荷が生じ、この生理的な静水圧は予想以上に大きく、大気圧 0.1MPa の数十から数百倍に及ぶことが知られている。Hodge らは(1986)、股関節の手術により埋め込んだ人工関節に圧力センサーを導入し、術後 1 年以上経過し、通常に戻った状態で、座位から起立した 際、股関節にかかる力を測定したところ、瞬間的には 18MPa の静水圧が負荷されることを明らかにした( Hodge et al., 1986)。また Afohe らは(1987)、ヒトの股関節にかかる通常の圧力は 3~ 10MPa であると報告されている( Afohe et al., 1987)。

また、日常の咀嚼時における咬合力に関しては、3~ 6 歳園児 163 人を対象とした調査報告がある。富士フィルム社の圧力測定フィルム(プレスケール)という感圧紙を用いて、画像解析する手法によると園児の平均咬合圧はおよそ 40MPa であり、瞬間的にかかる最大咬合力は、100MPa を超えることも報告されている(Higuchi, 2003)。すなわち、歯茎の組織などには、この咬合力に対する応力として静水圧が負荷されるものと考えられ、この園児のデータの最大値は世界で一番深いとされるマリアナ海溝の最深部 10,911m の静水圧に匹敵する。一方で、この「噛む」という動作により歯茎が丈夫になるとともに、顎の骨や顔の筋肉の発育を促し歯並びにも良い影響が及ぶ。すなわち、通常の生活では無意識的な場合が多い身近なメカノ刺激の1つである生理的静水圧の負荷は、これら組織や器官の恒常性の維持や強化に不可欠であるといえる。

この論文で使われている画像

参考文献

1. Abe,F. (2004). ”Piezophysiology”, exokiration of in vivo biological precesses under high- pressure conditions. Nippon Nogeikagaku Kaishi,78(4), 396-398.

2. Abe, F. & Horikoshi, K. (1998). Analysis of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in baro-(piezo-) physiology. Extremophiles, 2, 223–228.

3. Afohe,NYP., Byers,PD., Hutton,WC. (1987). Contact pressures in the human hip. J Bone Joint Surg Am, 69B, 536-541.

4. Aitlhadj, L., Stürzenbaum, SR. (2010). The use of FUdR can cause prolonged longevity in mutant nematodes. Mech Ageing Dev., 131(5), 364-5.

5. Alpas,H., Kalchayanand,N., Bozoglu,F., Sikes,A. C., Dunne,P., & Ray,B. (1999). Variation in Resistance to Hydrostatic Pressure among Strains of Food-Borne Pathogens. Appl Environ Microbiol, 65(9), 4248–4251.

6. Bakker, WJ., Harris, IS., Mak, TW. (2007). FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell., 28(6), 941- 53.

7. Balny, C., Hayashi, R., Heremans, K., & Masson, P. (1992). High pressure and biotechnology, Colloq. Inserm. , 224.

8. Barbieri, M., Chotalia, M., Fraser,J., Lavitas, LM., Dostie, J., Pombo, A., Nicodemi, M. (2012) .Complexity of chromatin folding is captured by the strings and binders switch model. Proc Natl Acad Sci USA, 109(40),16173–16178.

9. Barratt, MR., & Pool, SL. (2008). Principles of Clinical Medicine for Space Flight. Springer.

10. Bartlett, D H. (1999). Microbial adaptations to the psychrosphere/piezosphere. J Mol Microbiol Biotechnol, 1(1),93-100.

11. Bartlett, D H., & Welch, T J. (1995). ompH gene expression is regulated by multiple environmental cues in addition to high pressure in the deep-sea bacterium Photobacterium species strain SS9. JOURNAL OF BACTERIOLOGY, 177(4), 1008–1016.

12. Beckmann, R., Houben, A., Tohidnezhad, M., Kweider, N., Fragoulis, A., Wruck, C.J., Brandenburg, L.O., Hermanns-Sachweh, B., Goldring, M.B., Pufe, T., & Holger, Jahr. (2014). Mechanical forces induce changes in VEGF and VEGFR-1/sFlt-1 expression in human chondrocytes. Int. J. Mol. Sci., 15,15456–15474.

13. Bridgman, P. W. (1914). The coagulation of albumen by pressure. J. Biol. Chem. , 19, 511– 512.

14. Brunet, A., Park, J., Tran, H., Hu, L. S., Hemmings, B. A., & Greenberg, M. E. (2001). Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol. Cell. Biol., 21, 952–965.

15. Buckwalter, JA., Martin, JA., Brown, TD. (2006).Perspectives on chondrocyte mechanobiology and osteoarthritis. Biorheology, 43(34), 603-9.

16. Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C., & Schumacker, P. T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences, 95(20), 11715-11720.

17. Cheftel, J. (1992). Effects of High Hydrostatic Pressure on Food Constituents: An Overview. High Pressure and Biotechnology, 224, 195-209.

18. Chinopoulos, C., & Adam‐ Vizi, V. (2006). Calcium, mitochondria and oxidative stress in neuronal pathology. FEBS Journal, 273(3), 433-450.

19. Codelia VA, Sun G, Irvine KD. (2014). Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Curr. Biol., 24, 2012–2017.

20. Elder, BD., Athanasiou, KA. (2009) .Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng. B Rev, 15, 43–53.

21. Fleury, C., Mignotte, B., & Vayssière, J. L. (2002). Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 84(2), 131-141.

22. Furuhashi T., Sakamoto K. (2014). FoxO/Daf-16 restored thrashing movement reduced by heat stress in Caenorhabditis elegans. Comp. Biochem. Physiol. B Biochem. Mol. Biol, 170, 26–32.

23. Graier, W. F., Trenker, M., & Malli, R. (2008). Mitochondrial Ca 2+, the secret behind the function of uncoupling proteins 2 and 3?. Cell calcium, 44(1), 36-50.

24. Hall, D. M., Buettner, G. R., Oberley, L. W., Xu, L., Matthes, R. D., & Gisolfi, C. V. (2001). Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperther- mia. American Journal of Physiology-Heart and Circulatory Physiology, 280(2), H509-521.

25. Hayashi, M. , Nishiyama, M., Kazayama, Y., Toyota, T., Harada, Y., Takiguchi, K. (2016). Reversible morphological control of tubulin-encapsulating giant liposomes by hydrostatic pressure. Langmuir, 32, 3794–3802.

26. Hayashi, R., Kawamura,Y., Kunugi,S.(1987). Introduction of High Pressure to Food Processing: Preferential Proteolysis of β‐ Lactoglobulin in Milk Whey. Food Science, 52(4),1107-1108.

27. Henderson, ST., Johnson, TE. (2001). daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol,11, 1975-1980.

28. Hite, B. H. (1899). The effect of pressure in the preservation of milk. Bull. W. Va. Univ. Agric. Exp. Stn., 58, 15-35.

29. Hodge, WA., Fijan, RS., Carlson, KL., Burgess, RG., Harris, WH., Mann, RW. (1986). Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci USA, 83(9), 2879–2883.

30. Huang, SY., Pribenszky, C., Kuo, YH., Teng, SH., Chen YH., Chung MT., Chiu YF. (2009). Hydrostatic pressure pre-treatment affects the protein profile of boar sperm before and after freezing-thawing. Anim Reprod Sci, 112(1-2),136-49.

31. Iwasa, H., Maimaiti, S., Kuroyanagi,H., Kawano, S., Inami,K., Timalsina, S., Ikeda,M., Nakagawa,K., Hata, Y. (2013). Yes-associated protein homolog, YAP-1, is involved in the thermotolerance and aging in the nematode Caenorhabditis elegans. Exp. Cell Res, 319, 931- 945.

32. Karadedou, C. T., Gomes, A. R., Chen,J., Petkovic, M., Ho, K. K., Zwolinska, A. K., Feltes, Anne. ,Wong,San Yu., Chan, Kelvin Y. K., Cheung, Yuen-Nei., Tsang,Janice W. H., Brosens, Jan J., Khoo,Ui-Soon., & Lam, Eric W.-F. (2012). FOXO3a represses VEGF expression through FOXM1-dependent and - independent mechanisms in breast cancer. Oncogene, 31, 1845–1858.

33. Kenyon, C. (2010). A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Annals of the New York Academy of Sciences, 1204(1), 156-162.

34. Kenyon, C. J. (2010). The genetics of ageing. Nature, 464(7288), 504-512.

35. Kim, A. H., Sasaki, T., & Chao, M. V. (2003). JNK-interacting protein 1 promotes Akt1 activation. J. Biol. Chem, 278, 29830–29836.

36. Kim, N., Dempsey, CM., Kuan, CJ., Zoval, JV., O'Rourke, E., Ruvkun, G., Madou, MJ., Sze, JY. (2007). Gravity force transduced by the MEC-4/MEC-10 DEG/ENaC channel modulates DAF-16/FoxO activity in Caenorhabditis elegans. Genetics, 177, 835–45.

37. Kimura, K., Ida,M., Yosida, Y., Ohki, K., Fukumoto,T., Sakui,N. (1994). Comparison of Keeping Quality between Pressure-processed Jam and Heat-processed Jam: Changes in Flavor Components, Hue, and Nutrients during. Biosci. Biotech. Biochem. 58 (8). 1386-139.

38. Kimura, K. D., Tissenbaum, H. A., Liu, Y., & Ruvkun, G. (1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science, 277(5328), 942-946.

39. Kimura, T., Takanami, T., Sakashita, T., Wada, S., Kobayashi ,Y,. Higashitani, A. (2012). Innate immune genes including a mucin-like gene, mul-1, induced by ionizing radiation in Caenorhabditis elegans. Radiat Res, 178,313-20.

40. Kunimoto,Koshi., Yamazaki, Yuji., Nishida,Tomoki., Shinohara,Kyosuke., Ishikawa, Hiroaki., Hasegawa,Toshiaki., Okanoue,Takeshi., Hamada,Hiroshi., Noda,Tetsuo., Tamura,Atsushi., Tsukita,Shoichiro., Tsukita, Sachiko. (2012). Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. Cell, 148, 189-200.

41. Leong,DJ1., Li,YH., Gu,XI., Sun,L., Zhou,Z., Nasser,P., Laudier,DM., Iqbal,J., Majeska,RJ., Schaffler,MB., Goldring,MB., Cardoso,L., Zaidi,M., Sun,HB. (2011). Physiological loading of joints prevents cartilage degradation through CITED2. FASEB J, 25(1), 182-91.

42. Loening, A., Levenston,M., James,I., Nuttal,M., Hung, H., Gowen,M., Grodzinsky,A., Lark,M. (2000). Injurious mechanical compression of bovine articular cartilage induces chondrocyte apoptosis. Arch. Biochem. Biophys, 381, 205-212.

43. Lin,K., Hsin,H., Libina,N., Kenyon,C. (2001).Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling.Nat. Genet, 28, 139-145.

44. Maeshima, K.,Imai, R,Tamura., S.Nozaki,T. (2014). Chromatin as dynamic 10-nm fibers. Chromosoma, 123, 225-237.

45. Martins, R., Lithgow, G. J., & Link, W. (2015). Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging cell, 15(2),196-207.

46. Matsuzaki, Tokio., Alvarez-Garcia, Oscar., Mokuda,Sho., Nagira,Keita., Olmer,Merissa., Gamini,Ramya., Miyata, Kohei., Akasaki, Yukio., Su, Andrew I., Asahara ,Hiroshi.,& Lotz, Martin K. (2018).FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Science Translational Medicine, 10(428), eaan0746.

47. Momma, K., Homma, T., Isaka, R., Sudevan, S., Higashitani, A. (2017). Heat-induced calcium leakage causes mitochondrial damage in Caenorhabditis elegans body-wall muscles. Genetics, 206, 1985-1994.

48. Montagne, K., Onuma, Y., Ito, Y., Aiki, Y., Furukawa KS., Ushida, T. (2017). High hydrostatic pressure induces pro-osteoarthritic changes in cartilage precursor cells: A transcriptome analysis. PLoS ONE, 12(8), e0183226.

49. Nishiyama, Masayoshi., & Sowa, Yoshiyuki. (2012). Microscopic analysis of bacterial motility at high pressure. Biophysical Journal, 102, 1872-1880.

50. Nishiyama, M., Sowa,oshiyuki., Kimura, Yoshifumi., Homma,Michio., Ishijima, Akihiko., Terazima, Masahide. (2013). High Hydrostatic Pressure Induces Counterclockwise to Clockwise Reversals of the Escherichia coli Flagellar Motor. J. Bacteriol., 195, 1809-1814.

51. Noma,S.,Kiyohara,K.,Hirokado,R., Yamashita,N., Migita,Y., Tanaka,M., Furukawa,S., Ogihara,H., Morinaga,Y., Igura,N., & Shimoda,M. (2018).Increase in hydrophobicity of Bacillus subtilis spores by heat, hydrostatic pressure, and pressurized carbon dioxide treatments. Journal of Bioscience and Bioengineering , 125(3), 327-332.

52. Nozaki, T., Imai, R., Tanbo, M., Nagashima, R., Tamura, S., Tani, T., Joti, Y., Tomita, M., Hibino, K., Kanemaki, MT., Wendt, KS., Okada, Y., Nagai, T., Maeshima, K. (2017). Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol. Cell, 67, 282–293.

53. Ogg, S., Paradis, S., Gottlieb, S., Patterson, G. I., Lee, L., Tissenbaum, H. A., & Ruvkun, G. (1997). The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature, 389(6654), 994-999.

54. Ogura,Takahiro., Tsuchiya,Akihiro., Minas,Tom., & Mizuno,Shuichi. (2018). Optimization of Extracellular Matrix Synthesis and Accumulation by Human Articular Chondrocytes in 3-Dimensional Construct with Repetitive Hydrostatic Pressure. Cartilage, 9(2), 192–201.

55. Orrenius, S., Zhivotovsky, B., & Nicotera, P. (2003). Regulation of cell death: the calcium–apoptosis link. Nature reviews Molecular cell biology, 4(7), 552-565.

56. Pascarelli, NA., Collodel, G., Moretti,E., Cheleschi, S., Fioravanti, A. (2015). Changes in Ultrastructure and Cytoskeletal Aspects of Human Normal and Osteoarthritic Chondrocytes Exposed to Interleukin-1 and Cyclical Hydrostatic Pressure. Int. J. Mol. Sci., 16, 26019– 26034.

57. Piechulek ,A., Mikecz, A. (2018). Life span-resolved nanotoxicology enables identification of age-associated neuromuscular vulnerabilities in the nematode Caenorhabditis elegans. Environ Pollut, 233, 1095-1103.

58. Pribenszky, C., Horváth, A., Végh, L., Huang, SY., Kuo, YH., Szenci, O. (2011). Stress Preconditioning of Boar Spermatozoa: A New Approach to Enhance Semen Quality. Reprod Dom Anim, 46(2), 26–30.

59. Pribenszky,C., Molnár,M., Horváth,A., Harnos,A., Szenci, O. (2005). Hydrostatic pressure induced increase in post-thaw motility of frozen boar spermatozoa. Reprod. Fertil. Dev., 18(2), 162-163.

60. Putker, M., Madl, T., Vos, H.R., de Ruiter, H., Visscher, M., van den Berg, M.C., Kaplan, M., Korswagen, H.C., Boelens, R., Vermeulen, M., Burgering, B.M., Dansen, T.B.(2013).Redox- dependent control of FOXO/DAF-16 by transportin-1. Mol. Cell.,49,730–742.

61. Regmi,Saroj G., Rolland, Stéphane G., & Conradt, Barbara. (2014). Age-dependent changes in mitochondrial morphology and volume are not predictors of lifespan. Aging, 6(2),118–130.

62. Salmon, E. D.(1975). Pressure-Induced Depolymerization of Spindle Microtubules. J. Cell Biol., 65, 603−614.

63. Salmon, E. D., Goode,D.,MAUGEL,T.K. & Bonar, D.B. (1975). PRESSURE-INDUCED DEPOLYMERIZATION OF SPINDLE MICROTUBULES III. Differential Stability in HeLa Cells. J. Cell Biol., 69, 443-454.

64. Sato,M.,Levesque,M.,Nerem.M.,(1987).Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis,Thrombosis,and Vascular Biology, 7(3), 276-286.

65. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, JY., White, DJ., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A. (2012). "Fiji: an open-source platform for biological- image analysis". Nature methods, 9(7), 676-682.

66. Schwarz, J., Lewandrowski, I., & Bringmann, H. (2011). Reduced activity of a sensory neuron during a sleep-like state in Caenorhabditis elegans. Current Biology, 21(24), 983-984.

67. Singh, V.,& Aballay, A. (2009).Regulation of DAF-16-mediated Innate Immunity in Caenorhabditis elegans. J Biol Chem, 284(51), 35580-7.

68. Succinate, O. (1996). A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature, 382, 8.

69. Sulston, J. E., & Brenner, S. (1974). The DNA of Caenorhabditis elegans. Genetics, 77(1), 95- 104.

70. Takahashi,Kenji., Kubo,Toshikazu., Arai,Yuji., Kitajima,Isao., Takigawa,Masaharu., Imanishi,Jiro., Hirasawa,Yasusuke. (1998). Hydrostatic pressure induces expression ofinterleukin 6 and tumour necrosis factor α mRNAs in a chondrocyte-like cell line. Ann Rheum Dis, 57, 231–236.

71. Tan, FJ., Husain, M., Manlandro, CM., Koppenol, M., Fire, AZ., Hill, RB. (2008). CED-9 and mitochondrial homeostasis in C. elegans muscle. Journal of Cell Science , 121, 3373-3382.

72. Tatar, M., Bartke, A., Antebi, A. (2003). The endocrine regulation of aging by insulin-like signals. Science, 299(5611),1346-51.

73. Toker, A., & Cantley, L. C. (1997). Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature, 387(6634), 673-676.

74. Vass, H., Black, S.L., Herzig, E.M., Ward, F.B., Clegg, P.S., & Allen, R.J. (2010). A multipurpose modular system for high-resolution microscopy at high hydrostatic pressure. Rev. Sci. Instrum., 81(5), 053710.

75. Watanabe,Naoshi., Morimatsu, Masatoshi., Fujita, Ayano., Teranishi, Mika.,Sudevan., Watanabe, Masaru., Iwasa, Hiroaki., Hata, Yutaka., Kagi, Hiroyuki., Nishiyama, Masayoshi., Naruse, Keiji., Higashitani, Atsushi. (2020). Increased hydrostatic pressure induces nuclear translocation of DAF-16/FOXO in C. elegans. Biochemical and Biophysical Research Communications, 523(4), 853-858.

76. Wong, M., Siegrist, M., & Goodwin, K. (2003) Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone, 33, 685–693.

77. Xiaojuan, Sun., Wei-Dong, Chen., & Yan-Dong, Wang. (2017). DAF-16/FOXO Transcription Factor in Aging and Longevity. Front. Pharmacol, 8, 548.

78. Yu,H., Fellows,A., Foote,K., Yang Z., Figg,N., Littlewood,T., Bennett,M. (2018). FOXO3a (Forkhead Transcription Factor O Subfamily Member 3a) Links Vascular Smooth Muscle Cell Apoptosis, Matrix Breakdown, Atherosclerosis, and Vascular Remodeling Through a Novel Pathway Involving MMP13 (Matrix Metalloproteinase 13). Arterioscler Thromb Vasc Biol, 38(3), 555-565.

79. 井出聖,永島峻甫,前島一博. (2018). クロマチンダイナミクス‐クロマチンの物理特性とその生物学的意味.実験医学, 36(17), 80-86.

80. 木村邦男. (2000). 高圧を利用したジャムの製造.日本農芸化学(Nippon Nogeikagaku Kaishi) , 74(5), 616-618.

81. 高橋浩二郎. (1997).ヒト軟骨肉腫由来の軟骨様培養細胞株のインプリンティング遺伝子(IGF-II)の分子生物学的・分子遺伝学的研究.平成 7 年度財団法人両備てい園記念財団研究助成金による研究報告-生物学に関する試験研究論叢- , 12, 171-177.

82. 谷口吉弘.(1989).蛋白質の高圧変性. 蛋白質 核酸 酵素, 34(2), 98-104.

83. 谷口吉弘, 毛利信男. (2003).新しい高圧力の科学, 講談社, 244-263.

84. 西山 雅祥, 曽和 義幸. (2013). 細胞内の水で生命活動を操る! : 高圧力下で観るタンパク質水和変調イメージング. Chemistry, 68(9), 33-38.

85. 西山雅祥, 瀧口金吾, 林真人. (2016). 高圧力顕微鏡法による微小管のダイナミックコントロール(High-Pressure Microscopy for Controlling Microtubule Dynamics). 顕微鏡, 51(2), 118-121.

86. 林力丸. (1991).食品への圧力応用‐加工食品の物性‐, Netsu Bussei, 5(4), 284-290.

87. 樋口 將. (2003). 咬合機能と全身機能に関する研究.小児歯科学雑誌, 41(1), 148-164.

88. 湯川泰弘, 藤澤佳乃子, 金範埈, 松永行子. (2015). シェアストレス負荷条件下における in vitro 三次元微小管内の血管内皮細胞の挙動観察. 生産研究, 67(3), 251-253.

89. 山本和貴. (2015).食品高圧加工- 関連科学技術の進展-. 食品と容器, (56)9, 540-549.

参考文献をもっと見る