リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Constraint on Annihilating Dark Matter with Stacking of Local Faint Objects」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Constraint on Annihilating Dark Matter with Stacking of Local Faint Objects

橋本, 大輝 名古屋大学

2022.06.02

概要

ダークマターはその存在の発見から数十年を経た現在もなお正体が判明していない。ダークマターの有力な候補の 1 つは、対消滅を起こしγ線を放出することが期待されるため、近年宇宙γ線の観測を用いた間接的な探査が行われてきた。そのような研究では、銀河系や近傍の銀河、銀河団などに含まれるダークマター対消滅に由来するγ線量の予測と観測されたγ線量とを組み合わせることで、対消滅断面積を制限している。その断面積が、現在のダークマターの存在量を説明するために要求される対消滅断面積を下回る場合、そのダークマターモデルをダークマターの候補から除外することできる。よって、対消滅断面積を厳しく制限することでダークマターモデルを制限できる。

本研究では、低表面輝度銀河(LSBG)を用いて、対消滅断面積の制限する研究を行った。LSBGを用いる利点は、系統誤差が比較的少ない解析が可能だからである。これは LSBG が統計的に星形成活動の穏やかな天体であり、その活動に付随する高エネルギーのγ線が生じにくいためである。また、LSBG の視直径が 1 分角以下であり、γ線点源として扱えることも系統誤差が少ない理由である。また、将来的に膨大な数の LSBG が発見されると期待できることも挙げられる。これにより、大統計量による対消滅シグナルの探査が可能となる。

しかし、解析のγ線量の定量化に天体までの距離が必要な一方、ほとんどの LSBG が赤方偏移未測定であるという課題がある。この点を解決するために、本研究では赤方偏移クラスタリング法を使って各天体の距離情報を補うことを試みた。赤方偏移クラスタリング法は、赤方偏移が既知の天体サンプルと未知のサンプルとの間の 2 点角度相関を測定することによって、赤方偏移未測定のサンプル全体の赤方偏移分布を推定する手法である。この手法を用いて、LSBG サンプル全体の距離分布を見積もり、天体ごとにその分布に従った距離をランダムに付与することで、各サンプルに距離情報を与える。

DES のデータから得られた〜24000 個の LSBG サンプルに対して、この手法を実行し、フェルミγ線望遠鏡のデータを用いることによって、対消滅断面積に 95%の信頼度で〜3×10-25cm3/s(ダークマター質量 100 GeV)の上限値を与えた。ランダムな距離の付与による各天体のγ線量のばらつきやハロー質量及び質量分布の不定性を含めた統計誤差は 0.2dex であった。

本研究では、赤方偏移未測定の大規模 LSBG サンプルに対し、赤方偏移クラスタリング法によって測定した距離分布を用いて、各 LSBG のダークマター対消滅によるγ線量をモデリングした。これに宇宙γ線データを組み合わせて尤度解析を行うことでダークマター対消滅断面積に上限値を与えた。天体サンプルの統計量が十分に多ければ、各天体の距離は必要とせず、全体の距離分布を使用することで、断面積の制限を十分有効に行えることを示した。

参考文献

Search for dark matter in final states with an energetic jet, or a hadronically decaying W or Z boson using 12.9 fb−1 of data at √s = 13 TeV. 2016.

Kevork N. Abazajian, Jennifer K. Adelman-McCarthy, Marcel A. Agu¨eros, Sahar S. Allam, and Carlos Allende Prieto et al . The Seventh Data Release of the Sloan Digital Sky Survey. ApJS, 182(2):543–558, June 2009. doi: 10.1088/0067-0049/182/2/543.

Kevork N. Abazajian, Shunsaku Horiuchi, Manoj Kaplinghat, Ryan E. Keeley, and Oscar Macias. Strong constraints on thermal relic dark matter from Fermi-LAT observations of the Galactic Center. Phys. Rev. D, 102(4):043012, August 2020. doi: 10.1103/ PhysRevD.102.043012.

A. A. Abdo, M. Ackermann, M. Ajello, A. Allafort, and E. Antolini et al. (Fermi LAT Collaboration). Fermi Large Area Telescope First Source Catalog. ApJS, 188(2):405– 436, June 2010. doi: 10.1088/0067-0049/188/2/405.

S. Abdollahi, F. Acero, M. Ackermann, M. Ajello, and W. B. Atwood et al. (Fermi-LAT Collaboration). Fermi Large Area Telescope Fourth Source Catalog. ApJS, 247(1):33, March 2020. doi: 10.3847/1538-4365/ab6bcb.

F. Acero, M. Ackermann, M. Ajello, A. Albert, and W. B. Atwood et al. (Fermi-LAT Collaboration). Fermi Large Area Telescope Third Source Catalog. ApJS, 218:23, June 2015. doi: 10.1088/0067-0049/218/2/23.

M. Ackermann, A. Albert, B. Anderson, L. Baldini, and J. Ballet et al. (Fermi-LAT Collaboration). Dark matter constraints from observations of 25 MilkyAˆ Way satellite galaxies with the Fermi Large Area Telescope. Phys. Rev. D, 89(4):042001, February

M. Ackermann, M. Ajello, A. Albert, W. B. Atwood, and L. Baldini et al . The Spectrum of Isotropic Diffuse Gamma-Ray Emission between 100 MeV and 820 GeV. ApJ, 799: 86, January 2015a. doi: 10.1088/0004-637X/799/1/86.

M. Ackermann, M. Ajello, A. Albert, W. B. Atwood, and L. Baldini et al . Search for Extended Gamma-Ray Emission from the Virgo Galaxy Cluster with FERMI-LAT. ApJ, 812(2):159, October 2015b. doi: 10.1088/0004-637X/812/2/159.

M. Ackermann, M. Ajello, A. Albert, W. B. Atwood, and L. Baldini et al . The Spectrum of Isotropic Diffuse Gamma-Ray Emission between 100 MeV and 820 GeV. ApJ, 799: 86, January 2015c. doi: 10.1088/0004-637X/799/1/86.

M. Ackermann, A. Albert, B. Anderson, W. B. Atwood, and L. Baldini et al. (Fermi- LAT Collaboration). Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. Phys. Rev. Lett., 115(23):231301, December 2015d. doi: 10.1103/PhysRevLett.115.231301.

M. Ackermann, M. Ajello, A. Albert, W. B. Atwood, and L. Baldini et al . The Fermi Galactic Center GeV Excess and Implications for Dark Matter. ApJ, 840(1):43, May 2017. doi: 10.3847/1538-4357/aa6cab.

M. Ackermann, M. Ajello, L. Baldini, J. Ballet, and G. Barbiellini et al. (Fermi-LAT Col- laboration). Unresolved Gamma-Ray Sky through its Angular Power Spectrum. Phys. Rev. Lett., 121(24):241101, December 2018. doi: 10.1103/PhysRevLett.121.241101.

R. Adam, H. Goksu, S. Brown, L. Rudnick, and C. Ferrari. γ-ray detection toward the Coma cluster with Fermi-LAT: Implications for the cosmic ray content in the hadronic scenario. A&A, 648:A60, April 2021. doi: 10.1051/0004-6361/202039660.

M. L. Ahnen, S. Ansoldi, L. A. Antonelli, P. Antoranz, and A. Babic et al . Deep observation of the NGC 1275 region with MAGIC: search of diffuse γ-ray emis- sion from cosmic rays in the Perseus cluster. A&A, 589:A33, May 2016. doi: 10.1051/0004-6361/201527846.

H. Aihara, R. Armstrong, S. Bickerton, J. Bosch, and J. Coupon et al . First data release of the Hyper Suprime-Cam Subaru Strategic Program. PASJ, 70:S8, January 2018. doi: 10.1093/pasj/psx081.

Hiroaki Aihara, Yusra AlSayyad, Makoto Ando, Robert Armstrong, and James Bosch et al . Second data release of the Hyper Suprime-Cam Subaru Strategic Program. PASJ, 71(6):114, December 2019. doi: 10.1093/pasj/psz103.

Hiroaki Aihara, Yusra AlSayyad, Makoto Ando, Robert Armstrong, and James Bosch et al . Third Data Release of the Hyper Suprime-Cam Subaru Strategic Program. arXiv e-prints, art. arXiv:2108.13045, August 2021.

M. Ajello, D. Gasparrini, M. S´anchez-Conde, G. Zaharijas, and M. Gustafsson et al . The Origin of the Extragalactic Gamma-Ray Background and Implications for Dark Matter Annihilation. ApJ, 800(2):L27, February 2015. doi: 10.1088/2041-8205/800/2/L27.

M. Ajello, A. Albert, W. B. Atwood, G. Barbiellini, and D. Bastieri et al . Fermi-LAT Observations of High-Energy Gamma-Ray Emission toward the Galactic Center. ApJ, 819(1):44, March 2016. doi: 10.3847/0004-637X/819/1/44.

Albert, A., B. Anderson, K. Bechtol, A. Drlica-Wagner, and M. Meyer et al . Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-Lat. ApJ, 834(2):110, Jan 2017. doi: 10.3847/1538-4357/834/2/110.

S. Ando. Power spectrum tomography of dark matter annihilation with local galaxy distribution. J. Cosmology Astropart. Phys., 10:061, October 2014. doi: 10.1088/ 1475-7516/2014/10/061.

Shin’ichiro Ando and Daisuke Nagai. Fermi-LAT constraints on dark matter annihilation cross section from observations of the Fornax cluster. J. Cosmology Astropart. Phys., 2012(7):017, July 2012. doi: 10.1088/1475-7516/2012/07/017.

Shin’ichiro Ando, Aur´elien Benoit-L´evy, and Eiichiro Komatsu. Mapping dark matter in the gamma-ray sky with galaxy catalogs. Phys. Rev. D, 90(2):023514, Jul 2014. doi: 10.1103/PhysRevD.90.023514.

Shin’ichiro Ando, Alex Geringer-Sameth, Nagisa Hiroshima, Sebastian Hoof, Roberto Trotta, and Matthew G. Walker. Structure formation models weaken limits on wimp dark matter from dwarf spheroidal galaxies. Phys. Rev. D, 102:061302, Sep 2020. doi: 10.1103/PhysRevD.102.061302. URL https://link.aps.org/doi/10. 1103/PhysRevD.102.061302.

ATLAS Collaboration. Constraints on new phenomena via Higgs boson couplings and in- visible decays with the ATLAS detector. arXiv e-prints, art. arXiv:1509.00672, Septem- ber 2015.

Atlas Collaboration. Search for new phenomena in final states with an energetic jet and large missing transverse momentum in p p collisions at √{s }=13 TeV using the ATLAS detector. Phys. Rev. D, 94(3):032005, August 2016. doi: 10.1103/PhysRevD.94.032005.

W. B. Atwood, A. A. Abdo, M. Ackermann, W. Althouse, and B. Anderson et al . The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. ApJ, 697 (2):1071–1102, June 2009. doi: 10.1088/0004-637X/697/2/1071.

J. Ballet, T. H. Burnett, S. W. Digel, and B. Lott. Fermi Large Area Telescope Fourth Source Catalog Data Release 2. arXiv e-prints, art. arXiv:2005.11208, May 2020.

Julien Baur, Nathalie Palanque-Delabrouille, Christophe Y`eche, Alexey Boyarsky, Oleg Ruchayskiy, E´ric Armengaud, and Julien Lesgourgues. Constraints from Ly-α forests on non-thermal dark matter including resonantly-produced sterile neutrinos. J. Cos- mology Astropart. Phys., 2017(12):013, December 2017. doi: 10.1088/1475-7516/2017/ 12/013.

R. Bernabei, P. Belli, F. Cappella, V. Caracciolo, and S. Castellano et al . Final model independent result of DAMA/LIBRA-phase1. European Physical Journal C, 73:2648, December 2013. doi: 10.1140/epjc/s10052-013-2648-7.

E. Bertin and S. Arnouts. SExtractor: Software for source extraction. A&AS, 117: 393–404, June 1996. doi: 10.1051/aas:1996164.

Gianfranco Bertone and Dan Hooper. History of dark matter. Reviews of Modern Physics, 90(4):045002, October 2018. doi: 10.1103/RevModPhys.90.045002.

Pooja Bhattacharjee, Pratik Majumdar, Mousumi Das, Subinoy Das, Partha S. Joarder, and Sayan Biswas. Multiwavelength analysis of low surface brightness galaxies to study possible dark matter signature. MNRAS, 501(3):4238–4254, March 2021. doi: 10.1093/mnras/staa3877.

Michael R. Blanton, Eyal Kazin, Demitri Muna, Benjamin A. Weaver, and Adrian Price- Whelan. Improved Background Subtraction for the Sloan Digital Sky Survey Images.

Kimberly K. Boddy, Jason Kumar, Danny Marfatia, and Pearl Sand ick. Model- independent constraints on dark matter annihilation in dwarf spheroidal galaxies. Phys. Rev. D, 97(9):095031, May 2018. doi: 10.1103/PhysRevD.97.095031.

J. Bosch, R. Armstrong, S. Bickerton, H. Furusawa, and H. Ikeda et al . The Hyper Suprime-Cam software pipeline. PASJ, 70:S5, January 2018. doi: 10.1093/pasj/psx080.

Torsten Bringmann, Joakim Edsj¨o, Paolo Gondolo, Piero Ullio, and Lars Bergstr¨om. DarkSUSY 6: an advanced tool to compute dark matter properties numerically. Jour- nal of Cosmology and Astro-Particle Physics, 2018(7):033, Jul 2018. doi: 10.1088/ 1475-7516/2018/07/033.

Tian-Wen Cao, Hong Wu, Wei Du, Feng-Jie Lei, Ming Zhu, Jan Wouterloot, Harriet Parsons, Yi-Nan Zhu, Chao-Jian Wu, Fan Yang, Chen Cao, Zhi-Min Zhou, Min He, Jun-Jie Jin, and James E. Wicker. Molecular Gas and Star-formation in Low Surface Brightness Galaxies. AJ, 154(3):116, September 2017. doi: 10.3847/1538-3881/aa845a.

Eric Carlson, Dan Hooper, and Tim Linden. Improving the sensitivity of gamma-ray telescopes to dark matter annihilation in dwarf spheroidal galaxies. Phys. Rev. D, 91 (6):061302, March 2015. doi: 10.1103/PhysRevD.91.061302.

Bernard Carr, Florian Ku¨hnel, and Marit Sandstad. Primordial black holes as dark matter. Phys. Rev. D, 94(8):083504, October 2016. doi: 10.1103/PhysRevD.94.083504.

J. Carr, C. Balazs, T. Bringmann, T. Buanes, and M. Daniel et al . Prospects for Indirect Dark Matter Searches with the Cherenkov Telescope Array (CTA). In 34th Interna- tional Cosmic Ray Conference (ICRC2015), volume 34 of International Cosmic Ray Conference, page 1203, July 2015.

Laura J. Chang, Mariangela Lisanti, and Siddharth Mishra-Sharma. Search for dark matter annihilation in the Milky Way halo. Phys. Rev. D, 98(12):123004, December 2018. doi: 10.1103/PhysRevD.98.123004.

E. Charles, M. S´anchez-Conde, B. Anderson, R. Caputo, and A. Cuoco et al . Sensitivity projections for dark matter searches with the Fermi large area telescope. Phys. Rep., 636:1–46, Jun 2016. doi: 10.1016/j.physrep.2016.05.001.

Douglas Clowe, Maruˇsa Bradaˇc, and Anthony H. Gonzalez et al . A Direct Empirical Proof of the Existence of Dark Matter. ApJ, 648(2):L109–L113, September 2006. doi: 10.1086/508162.

Christopher J. Conselice, Aaron Wilkinson, Kenneth Duncan, and Alice Mortlock. The Evolution of Galaxy Number Density at z ¡ 8 and Its Implications. ApJ, 830(2):83, October 2016. doi: 10.3847/0004-637X/830/2/83.

Basudeb Dasgupta and Joachim Kopp. Sterile neutrinos. Phys. Rep., 928:1–63, September 2021. doi: 10.1016/j.physrep.2021.06.002.

W. J. C. de Blok and S. S. McGough. Dark Matter in Low Surface Brightness Galaxies. In Massimo Persic and Paolo Salucci, editors, Dark and Visible Matter in Galaxies and Cosmological Implications, volume 117 of Astronomical Society of the Pacific Confer- ence Series, page 39, January 1997.

Chiara Di Paolo, Paolo Salucci, and Adnan Erkurt. The universal rotation curve of low surface brightness galaxies - IV. The interrelation between dark and luminous matter. MNRAS, 490(4):5451–5477, December 2019. doi: 10.1093/mnras/stz2700.

A. Drlica-Wagner, I. Sevilla-Noarbe, E. S. Rykoff, R. A. Gruendl, and B. Yanny et al. (DES Collaboration). Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology. ApJS, 235(2):33, April 2018. doi: 10.3847/1538-4365/aab4f5.

Wei Du, Hong Wu, Man I. Lam, Yinan Zhu, Fengjie Lei, and Zhimin Zhou. Low Surface Brightness Galaxies Selected from the 40% Sky Area of the ALFALFA H I Survey. I. Sample and Statistical Properties. AJ, 149(6):199, June 2015. doi: 10.1088/0004-6256/ 149/6/199.

Wei Du, Cheng Cheng, Hong Wu, Ming Zhu, and Yougang Wang. Low Surface Brightness Galaxy catalogue selected from the α.40-SDSS DR7 Survey and Tully-Fisher relation. MNRAS, 483(2):1754–1795, February 2019. doi: 10.1093/mnras/sty2976.

A. A. Dutton and A. V. Macci`o. Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles. MNRAS, 441:3359–3374, July 2014a. doi: 10.1093/mnras/stu742.

Aaron A. Dutton and Andrea V. Macci`o. Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles. MNRAS, 441(4): 3359–3374, Jul 2014b. doi: 10.1093/mnras/stu742.

P. Erwin. IMFIT: A Fast, Flexible New Program for Astronomical Image Fitting. ApJ, 799:226, February 2015. doi: 10.1088/0004-637X/799/2/226.

B. Flaugher, H. T. Diehl, K. Honscheid, T. M. C. Abbott, and O. Alvarez et al. (DES collaboration). The Dark Energy Camera. AJ, 150(5):150, November 2015. doi: 10. 1088/0004-6256/150/5/150.

K. C. Freeman. On the Disks of Spiral and S0 Galaxies. ApJ, 160:811, June 1970. doi: 10.1086/150474.

Gaspar Galaz, Rodrigo Herrera-Camus, Diego Garcia-Lambas, and Nelson Padilla. Low Surface Brightness Galaxies in the SDSS: The Link Between Environment, Star-forming Properties, and Active Galactic Nuclei. ApJ, 728(2):74, February 2011. doi: 10.1088/ 0004-637X/728/2/74.

V. Gammaldi, E. Karukes, and P. Salucci. Theoretical predictions for dark matter detec- tion in dwarf irregular galaxies with gamma rays. Phys. Rev. D, 98(8):083008, October 2018. doi: 10.1103/PhysRevD.98.083008.

C. Gordon and O. Mac´ıas. Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations. Phys. Rev. D, 88(8):083521, October 2013. doi: 10.1103/PhysRevD.88.083521.

J. P. Greco, J. E. Greene, M. A. Strauss, L. A. Macarthur, and X. Flowers et al . Illu- minating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey. ApJ, 857:104, April 2018a. doi: 10.3847/1538-4357/aab842.

Johnny P. Greco, Andy D. Goulding, Jenny E. Greene, Michael A. Strauss, Song Huang, Ji Hoon Kim, and Yutaka Komiyama. A Study of Two Diffuse Dwarf Galaxies in the Field. ApJ, 866:112, October 2018b. doi: 10.3847/1538-4357/aae0f4.

Kim Griest and Marc Kamionkowski. Unitarity limits on the mass and radius of dark- matter particles. Phys. Rev. Lett., 64:615–618, Feb 1990. doi: 10.1103/PhysRevLett.

Kim Griest and David Seckel. Three exceptions in the calculation of relic abundances. Phys. Rev. D, 43:3191–3203, 1991. doi: 10.1103/PhysRevD.43.3191.

Daiki Hashimoto, Oscar Macias, Atsushi J. Nishizawa, Kohei Hayashi, and Masahiro Takada et al . Constraining dark matter annihilation with HSC low sur- face brightness galaxies. J. Cosmology Astropart. Phys., 2020(1):059, January 2020. doi: 10.1088/1475-7516/2020/01/059.

Ha¨ußler, Boris, Steven P. Bamford, Marina Vika, Alex L. Rojas, and Marco Barden et al . MegaMorph - multiwavelength measurement of galaxy structure: complete S´ersic profile information from modern surveys. MNRAS, 430(1):330–369, March 2013. doi: 10.1093/mnras/sts633.

Martha P. Haynes, Riccardo Giovanelli, Ann M. Martin, Kelley M. Hess, and Am´elie Sain- tonge et al . The Arecibo Legacy Fast ALFA Survey: The α.40 H I Source Catalog, Its Characteristics and Their Impact on the Derivation of the H I Mass Function. AJ, 142 (5):170, November 2011. doi: 10.1088/0004-6256/142/5/170.

O. Helene. Upper limit of peak area. Nuclear Instruments and Methods in Physics Research, 212(1-3):319–322, Jul 1983. doi: 10.1016/0167-5087(83)90709-3.

Sergio Hern´andez Cadena, Rub´en Alfaro, Andr´es Sandoval, Ernesto Belmont, Hermes Le´on, Viviana Gammaldi, Ekaterina Karukes, and Paolo Salucci. Searching for TeV DM evidence from Dwarf Irregular Galaxies with the HAWC Observatory. arXiv e- prints, art. arXiv:1708.04642, August 2017.

Chiaki Hikage, Masamune Oguri, Takashi Hamana, Surhud More, and Shiang-Yu et al Rachel Mandelbaum. Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data. PASJ, 71(2):43, April 2019. doi: 10.1093/pasj/psz010.

N. Hiroshima, S. Ando, and T. Ishiyama. Modeling evolution of dark matter sub- structure and annihilation boost. Phys. Rev. D, 97(12):123002, June 2018. doi: 10.1103/PhysRevD.97.123002.

R. F. L. Holanda, R. S. Gon¸calves, J. E. Gonzalez, and J. S. Alcaniz. An estimate of the dark matter density from galaxy clusters and supernovae data. J. Cosmology Astropart. Phys., 2019(11):032, November 2019. doi: 10.1088/1475-7516/2019/11/032.

S. Hoof, A. Geringer-Sameth, and R. Trotta. A Global Analysis of Dark Matter Signals from 27 Dwarf Spheroidal Galaxies using Ten Years of Fermi-LAT Observations. arXiv e-prints, December 2018.

Sebastian Hoof, Alex Geringer-Sameth, and Roberto Trotta. A global analysis of dark matter signals from 27 dwarf spheroidal galaxies using 11 years of Fermi-LAT observations. J. Cosmology Astropart. Phys., 2020(2):012, February 2020. doi: 10.1088/1475-7516/2020/02/012.

Dan Hooper and Lisa Goodenough. Dark matter annihilation in the Galactic Center as seen by the Fermi Gamma Ray Space Telescope. Physics Letters B, 697(5):412–428, March 2011. doi: 10.1016/j.physletb.2011.02.029.

Travis J. Hurst, Andrew R. Zentner, Aravind Natarajan, and Carles Badenes. Indirect probes of dark matter and globular cluster properties from dark matter annihilation within the coolest white dwarfs. Phys. Rev. D, 91(10):103514, May 2015. doi: 10.1103/ PhysRevD.91.103514.

Chris Impey and Greg Bothun. Low Surface Brightness Galaxies. ARA&A, 35:267–307, January 1997. doi: 10.1146/annurev.astro.35.1.267.

Tesla E. Jeltema and Stefano Profumo. Fitting the Gamma-Ray Spectrum from Dark Matter with DMFIT: GLAST and the Galactic Center Region. JCAP, 0811:003, 2008. doi: 10.1088/1475-7516/2008/11/003.

S. Jester, D. P. Schneider, G. T. Richards, R. F. Green, and M. Schmidt et al . The Sloan Digital Sky Survey View of the Palomar-Green Bright Quasar Survey. AJ, 130: 873–895, September 2005. doi: 10.1086/432466.

D. Heath Jones, Will Saunders, Matthew Colless, Mike A. Read, and Quentin A. Parker et al . The 6dF Galaxy Survey: samples, observational techniques and the first data release. MNRAS, 355(3):747–763, December 2004. doi: 10.1111/j.1365-2966.2004. 08353.x.

D. Heath Jones, Mike A. Read, Will Saunders, Matthew Colless, and Tom Jarrett et al .

MNRAS, 399(2):683–698, October 2009. doi: 10.1111/j.1365-2966.2009.15338.x.

M. Juri´c, J. Kantor, K. T. Lim, R. H. Lupton, and G. Dubois-Felsmann et al . The LSST Data Management System. In N. P. F. Lorente, K. Shortridge, and R. Wayth, editors, Astronomical Data Analysis Software and Systems XXV, volume 512 of Astronomical Society of the Pacific Conference Series, page 279, December 2017.

Andrey Katz, Joachim Kopp, Sergey Sibiryakov, and Wei Xue. Femtolensing by dark matter revisited. J. Cosmology Astropart. Phys., 2018(12):005, December 2018. doi: 10.1088/1475-7516/2018/12/005.

Y. Komiyama, Y. Obuchi, H. Nakaya, Y. Kamata, and S. Kawanomoto et al . Hyper Suprime-Cam: Camera dewar design. PASJ, 70:S2, January 2018. doi: 10.1093/pasj/ psx069.

Michael Kuhlen, Mark Vogelsberger, and Raul Angulo. Numerical simulations of the dark universe: State of the art and the next decade. Physics of the Dark Universe, 1(1-2): 50–93, November 2012. doi: 10.1016/j.dark.2012.10.002.

S. D. Landy and A. S. Szalay. Bias and variance of angular correlation functions. ApJ, 412:64–71, July 1993. doi: 10.1086/172900.

Benjamin W. Lee and Steven Weinberg. Cosmological lower bound on heavy-neutrino masses. Phys. Rev. Lett., 39:165–168, Jul 1977. doi: 10.1103/PhysRevLett.39.165. URL https://link.aps.org/doi/10.1103/PhysRevLett.39.165.

Feng-Jie Lei. Star Formation in Low Surface Brightness Galaxies. PASP, 131(1006): 127001, December 2019. doi: 10.1088/1538-3873/ab45cd.

Feng-Jie Lei, Hong Wu, Yi-Nan Zhu, Wei Du, and Min He et al . An Hα Imaging Survey of the Low Surface Brightness Galaxies Selected from the Spring Sky Region of the 40% ALFALFA H I Survey. ApJS, 242(1):11, May 2019. doi: 10.3847/1538-4365/ab16ee.

Mariangela Lisanti, Siddharth Mishra-Sharma, Nicholas L. Rodd, and Benjamin R. Safdi. Search for Dark Matter Annihilation in Galaxy Groups. Phys. Rev. Lett., 120:101101, Mar 2018. doi: 10.1103/PhysRevLett.120.101101.

Paola Marigo, L´eo Girardi, Alessandro Bressan, Philip Rosenfield, and Bernhard Aringer et al . A New Generation of PARSEC-COLIBRI Stellar Isochrones Including the TP- David J. E. Marsh. Axion cosmology. Phys. Rep., 643:1–79, July 2016. doi: 10.1016/j. physrep.2016.06.005.

L. D. Matthews, W. van Driel, and D. Monnier-Ragaigne. H I observations of giant low surface brightness galaxies. A&A, 365:1–10, January 2001. doi: 10.1051/0004-6361: 20000002.

S. S. McGaugh and G. D. Bothun. Structural Characteristics and Stellar Composition of Low Surface Brightness Disk Galaxies. AJ, 107:530, February 1994. doi: 10.1086/ 116874.

Brice M´enard, Ryan Scranton, Samuel Schmidt, Chris Morrison, and Donghui Jeong et al . Clustering-based redshift estimation: method and application to data. arXiv e-prints, art. arXiv:1303.4722, March 2013.

R. F. Minchin, M. J. Disney, Q. A. Parker, P. J. Boyce, and W. J. G. de Blok et al . The cosmological significance of low surface brightness galaxies found in a deep blind neutral hydrogen survey. MNRAS, 355(4):1303–1314, December 2004. doi: 10.1111/j. 1365-2966.2004.08409.x.

S. Miyazaki, Y. Komiyama, S. Kawanomoto, Y. Doi, and H. Furusawa et al . Hyper Suprime-Cam: System design and verification of image quality. PASJ, 70:S1, January 2018. doi: 10.1093/pasj/psx063.

E. Morganson, R. A. Gruendl, F. Menanteau, M. Carrasco Kind, and Y. C. Chen et al . The Dark Energy Survey Image Processing Pipeline. PASP, 130(989):074501, July 2018. doi: 10.1088/1538-3873/aab4ef.

B. P. Moster, T. Naab, and S. D. M. White. Galactic star formation and accretion histories from matching galaxies to dark matter haloes. MNRAS, 428:3121–3138, February 2013. doi: 10.1093/mnras/sts261.

Riccardo Murgia, Vid Irˇsiˇc, and Matteo Viel. Novel constraints on noncold, nonthermal dark matter from Lyman-α forest data. Phys. Rev. D, 98(8):083540, October 2018. doi: 10.1103/PhysRevD.98.083540.

J. F. Navarro, C. S. Frenk, and S. D. M. White. The Structure of Cold Dark Matter Jeffrey A. Newman. Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations. ApJ, 684(1):88–101, September 2008. doi: 10.1086/589982.

Takeshi Nihei, Leszek Roszkowski, and Roberto Ruiz de Austri. Towards an accurate calculation of the neutralino relic density. Journal of High Energy Physics, 2001(5): 063, May 2001. doi: 10.1088/1126-6708/2001/05/063.

P. L. Nolan, A. A. Abdo, M. Ackermann, M. Ajello, and A. Allafort et al . Fermi Large Area Telescope Second Source Catalog. ApJS, 199(2):31, Apr 2012. doi: 10.1088/ 0067-0049/199/2/31.

C. Patrignani et al. Review of Particle Physics. Chin. Phys. C, 40(10):100001, 2016. doi: 10.1088/1674-1137/40/10/100001.

Jovana Petrovi´c, Pasquale Dario Serpico, and Gabrijela Zaharijaˇs. Galactic Center gamma-ray “excess” from an active past of the Galactic Centre? J. Cosmology As- tropart. Phys., 2014(10):052, October 2014. doi: 10.1088/1475-7516/2014/10/052.

R. W. Pike and Michael J. Hudson. Cosmological Parameters from the Comparison of the 2MASS Gravity Field with Peculiar Velocity Surveys. ApJ, 635(1):11–21, December 2005. doi: 10.1086/497359.

Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, and et al. Planck 2018 results. VI. Cosmological parameters. arXiv e-prints, art. arXiv:1807.06209, Jul 2018.

D. J. Prole, M. Hilker, R. F. J. van der Burg, M. Cantiello, and A. Venhola et al . Halo mass estimates from the globular cluster populations of 175 low surface brightness galaxies in the Fornax cluster. MNRAS, 484(4):4865–4880, Apr 2019. doi: 10.1093/mnras/stz326.

Scott W. Randall, Maxim Markevitch, Douglas Clowe, Anthony H. Gonzalez, and Marusa Bradaˇc. Constraints on the Self-Interaction Cross Section of Dark Matter from Numer- ical Simulations of the Merging Galaxy Cluster 1E 0657-56. ApJ, 679(2):1173–1180, June 2008. doi: 10.1086/587859.

M. Regis, J.-Q. Xia, A. Cuoco, E. Branchini, N. Fornengo, and M. Viel. Particle Dark Matter Searches Outside the Local Group. Physical Review Letters, 114(24):241301,

Sarah Roberts, Jonathan Davies, Sabina Sabatini, Wim van Driel, and Karen O’Neil et al . A search for low surface brightness dwarf galaxies in different environments. MNRAS, 352(2):478–492, August 2004. doi: 10.1111/j.1365-2966.2004.07934.x.

Vera C. Rubin and Jr. Ford, W. Kent. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. ApJ, 159:379, February 1970. doi: 10.1086/ 150317.

Misao Sasaki, Teruaki Suyama, Takahiro Tanaka, and Shuichiro Yokoyama. Primordial black holes—perspectives in gravitational wave astronomy. Classical and Quantum Gravity, 35(6):063001, March 2018. doi: 10.1088/1361-6382/aaa7b4.

Jose Luis Sersic. Atlas de Galaxias Australes. 1968.

I. Sevilla-Noarbe, K. Bechtol, M. Carrasco Kind, A. Carnero Rosell, and M. R. Becker et al. (DES collaboration). Dark Energy Survey Year 3 Results: Photometric Data Set for Cosmology. ApJS, 254(2):24, June 2021. doi: 10.3847/1538-4365/abeb66.

Pierre Sikivie. Axion Cosmology, volume 741, page 19. 2008.

Gary Steigman, Basudeb Dasgupta, and John F. Beacom. Precise relic WIMP abundance and its impact on searches for dark matter annihilation. Phys. Rev. D, 86(2):023506, Jul 2012. doi: 10.1103/PhysRevD.86.023506.

Sunao Sugiyama, Masahiro Takada, Hironao Miyatake, Takahiro Nishimichi, and Masato Shirasaki et al .

D. Tanoglidis, A. Drlica-Wagner, K. Wei, T. S. Li, and J. S´anchez et al. (DES Collabo- ration). Shadows in the Dark: Low-surface-brightness Galaxies Discovered in the Dark Energy Survey. ApJS, 252(2):18, February 2021. doi: 10.3847/1538-4365/abca89.

Charles Thorpe-Morgan, Denys Malyshev, Christoph-Alexander Stegen, Andrea San- tangelo, and Josef Jochum. Annihilating dark matter search with 12 yr of Fermi LAT data in nearby galaxy clusters. MNRAS, 502(3):4039–4047, April 2021. doi: 10.1093/mnras/stab208.

C. Trachternach, D. J. Bomans, L. Haberzettl, and R. J. Dettmar. An optical search for low surface brightness galaxies in the Arecibo HI Strip Survey. A&A, 458(1):341–348,

Martin Vollmann, Volker Heesen, Timothy W. Shimwell, Martin J. Hardcastle, Marcus Bru¨ggen, Gu¨nter Sigl, and Huub J. A. R¨ottgering. Radio constraints on dark matter annihilation in Canes Venatici I with LOFAR. MNRAS, 496(3):2663–2672, August 2020. doi: 10.1093/mnras/staa1657.

S. S. Wilks. The large-sample distribution of the likelihood ratio for testing composite hypotheses. The Annals of Mathematical Statistics, 9(1):60–62, 1938. ISSN 00034851. URL http://www.jstor.org/stable/2957648.

Henriette Wirth, Kenji Bekki, and Kohei Hayashi. Formation of massive globular clusters with dark matter and its implication on dark matter annihilation. MNRAS, 496(1): L70–L74, July 2020. doi: 10.1093/mnrasl/slaa089.

J. Woo, S. Courteau, and A. Dekel. Scaling relations and the fundamental line of the local group dwarf galaxies. MNRAS, 390:1453–1469, November 2008. doi: 10.1111/j. 1365-2966.2008.13770.x.

Xenon Collaboration. First Dark Matter Search Results from the XENON1T Experi- ment. Phys. Rev. Lett., 119(18):181301, November 2017. doi: 10.1103/PhysRevLett. 119.181301.

XMASS Collaboration. Direct dark matter search by annual modulation in XMASS-I. arXiv e-prints, art. arXiv:1511.04807, November 2015.

P. C. Zinn, M. Stritzinger, J. Braithwaite, A. Gallazzi, and P. Grunden et al . Supernovae without host galaxies?. The low surface brightness host of SN 2009Z. A&A, 538:A30, February 2012. doi: 10.1051/0004-6361/201116433.

F. Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6:110–127, January 1933.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る