リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spectroscopic Study on Galactic Outflows over Cosmic History」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spectroscopic Study on Galactic Outflows over Cosmic History

菅原, 悠馬 東京大学 DOI:10.15083/0002004691

2022.06.22

概要

The galactic outflows in star-forming galaxies are thought to play a key role to regulate the galaxy evolution. Despite many observations in a wide redshift range, it is unclear how the outflows evolve throughout redshifts. We conduct a systematic study of the galactic-scale cool/warm outflows in starforming galaxies at z ∼ 0–6, by analyzing the metal absorption lines in the observed-frame optical spectra taken from the SDSS DR7 at z ∼ 0, the DEEP2 DR4 at z ∼ 1, Keck galaxies in Erb et al. at z ∼ 2, and Lyman break galaxies in Capak et al. at z = 5–6. We carefully construct galaxy samples with similar stellar-mass distributions at z ∼ 0, 1, 2, and 5–6 and produce composite spectra with high signal-to-noise ratio to perform the multi-component fitting of absorption-line profiles and stellar continua to the absorption lines. We finally obtain outflow properties from the blueshifted outflow components.

We measure the maximum (vmax) and central (vout) outflow velocities from the outflow components. By making use of the ALMA [C ii]158 µm emission lines for systemic velocities, we can present the first measurements of the outflow velocities at z = 5–6: vmax = 700+180 −110 km s−1 and vout = 400+100 −150 km s−1 . Although the available absorption lines depend on the redshifts, we investigate the redshift evolution of the outflow velocities by comparing the absorption lines that have similar ionization energy and line depth at different redshifts (Na i D and Mg i at z ∼ 0–1; Mg ii and C ii at z ∼ 1–2). This comparison shows no significant differences between the outflow velocities derived from the low to high-ionization absorption lines. We identify, for the first time, the vmax value of our z = 5–6 galaxies is 3.5 times higher than those of z ∼ 0 galaxies and comparable to z ∼ 2 galaxies at a fixed stellar mass of M∗ ∼ 1010.1 M⊙. This implies that the outflow velocities strongly increase from z ∼ 0 to 2 and weakly increase from z ∼ 2 to 6 at the fixed stellar mass.

Estimating the halo circular velocity vcir from the stellar masses and the abundance matching results, we investigate a vmax–vcir relation. The maximum outflow velocity vmax for galaxies with M∗ = 1010.0–10.8 M⊙ shows a tight positive correlation with vcir and the galaxy star formation rate (SFR) over z = 0–6 with a small scatter of ≃ ±0.1 dex. This positive correlation between vmax and vcir is in good agreement with theoretical predictions by numerical simulations. This suggests that the outflow velocity is physically related to the halo circular velocity. The redshift evolution of vmax at fixed M∗ can be explained by the increase of vcir toward high redshift.

To find the fundamental parameter to determine vmax with a single relation throughout all redshifts, we study relations between vmax and galaxy properties. The outflow maximum velocity vmax shows strong correlations with vcir, SFR, SFR/M∗, and the predicted SFR surface density ΣSFR. In addition to the tight correlations, only vcir and SFR can explain vmax with single scaling relations throughout z = 0–6. Therefore, vcir or SFR is likely to be the fundamental parameter.

We also estimate the mass loading factor (η), a ratio of the mass outflow rate to SFR, under the assumption of the fiducial parameters. We find that the η value increases from z ∼ 0 to 2 by η ∝ (1 + z) 1.2±0.3 at a given vcir, albeit with a potential systematics caused by model parameter choices. The redshift evolution of vmax (vout) and η is consistent with the galaxy-size evolution and explained by high-gas fractions in high-redshift massive galaxies, which is supported by radio observations. We obtain a scaling relation of η ∝ v a cir for a = −0.2 ± 1.1 in our z ∼ 0 galaxies that agrees with the momentum-driven outflow model (a = −1) within the uncertainty

We indirectly estimate the escape fraction of the Lyman-continuum photons using absorption-line profiles. Our measurement at z = 5–6 is located on the relation found at z ∼ 2–4 between the maximum covering fraction of the Si ii line and the Lyα equivalent width. The intrinsic Lyman-continuum escape fraction would be much lower than 20%, while the ratio absorption-line profile exhibits a signature comparable to the local Lyman-continuum leaking galaxies.

この論文で使われている画像

参考文献

Abazajian, K., Adelman-McCarthy, J. K., Ag¨ueros, M. A., et al. 2004, AJ, 128, 502, doi: 10.1086/421365

Abazajian, K. N., Adelman-McCarthy, J. K., Ag¨ueros, M. A., et al. 2009, ApJS, 182, 543, doi: 10.1088/0067-0049/182/2/543

Adelberger, K. L., Steidel, C. C., Shapley, A. E., et al. 2004, ApJ, 607, 226, doi: 10. 1086/383221

Ajiki, M., Taniguchi, Y., Murayama, T., et al. 2002, ApJ, 576, L25, doi: 10.1086/ 343026

Alexandroff, R. M., Heckman, T. M., Borthakur, S., Overzier, R., & Leitherer, C. 2015, ApJ, 810, 104, doi: 10.1088/0004-637X/810/2/104

Barai, P., Monaco, P., Murante, G., Ragagnin, A., & Viel, M. 2015, MNRAS, 447, 266, doi: 10.1093/mnras/stu2340

Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2013, ApJ, 770, 57, doi: 10.1088/ 0004-637X/770/1/57

Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, ApJS, 149, 289, doi: 10.1086/378847

Blanton, M. R., & Roweis, S. 2007, AJ, 133, 734, doi: 10.1086/510127

Bordoloi, R., Lilly, S. J., Hardmeier, E., et al. 2014, ApJ, 794, 130, doi: 10.1088/0004-637X/794/2/130

Bouch´e, N., Hohensee, W., Vargas, R., et al. 2012, MNRAS, 426, 801, doi: 10.1111/j.1365-2966.2012.21114.x

Breitschwerdt, D., McKenzie, J. F., & Voelk, H. J. 1991, A&A, 245, 79

Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151, doi: 10.1111/j.1365-2966.2004.07881.x

Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000, doi: 10.1046/j.1365-8711.2003.06897.x

Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682, doi: 10.1086/308692

Capak, P. L., Carilli, C., Jones, G., et al. 2015, Nature, 522, 455, doi: 10.1038/nature14500

Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157, doi: 10.1086/153315

Ceverino, D., Arribas, S., Colina, L., et al. 2016, MNRAS, 460, 2731, doi: 10.1093/mnras/stw1195

Chabrier, G. 2003, PASP, 115, 763, doi: 10.1086/376392

Chen, Y.-M., Tremonti, C. A., Heckman, T. M., et al. 2010, AJ, 140, 445, doi: 10.1088/0004-6256/140/2/445

Chevalier, R. A., & Clegg, A. W. 1985, Nature, 317, 44, doi: 10.1038/317044a0

Chisholm, J., Orlitov´a, I., Schaerer, D., et al. 2017a, A&A, 605, A67, doi: 10.1051/0004-6361/201730610

Chisholm, J., Tremonti, C. A., Leitherer, C., & Chen, Y. 2016a, MNRAS, 463, 541,doi: 10.1093/mnras/stw1951—. 2017b, MNRAS, 469, 4831, doi: 10.1093/mnras/stx1164

Chisholm, J., Tremonti, C. A., Leitherer, C., Chen, Y., & Wofford, A. 2016b, MNRAS, 457, 3133, doi: 10.1093/mnras/stw178

Chisholm, J., Tremonti, C. A., Leitherer, C., et al. 2015, ApJ, 811, 149, doi: 10.1088/0004-637X/811/2/149

Chisholm, J., Gazagnes, S., Schaerer, D., et al. 2018, A&A, 616, A30, doi: 10.1051/0004-6361/201832758

Christensen, C. R., Dav´e, R., Governato, F., et al. 2016, ApJ, 824, 57, doi: 10.3847/0004-637X/824/1/57

Cicone, C., Maiolino, R., & Marconi, A. 2016, A&A, 588, A41, doi: 10.1051/0004-6361/201424514

Ciddor, P. E. 1996, Appl. Opt., 35, 1566, doi: 10.1364/AO.35.001566

Coil, A. L., Newman, J. A., Kaiser, N., et al. 2004, ApJ, 617, 765, doi: 10.1086/425676

Coil, A. L., Weiner, B. J., Holz, D. E., et al. 2011, ApJ, 743, 46, doi: 10.1088/0004-637X/743/1/46

Concas, A., Popesso, P., Brusa, M., et al. 2017, A&A, 606, A36, doi: 10.1051/0004-6361/201629519

Concas, A., Popesso, P., Brusa, M., Mainieri, V., & Thomas, D. 2019, A&A, 622,A188, doi: 10.1051/0004-6361/201732152

Cooper, M. C., Newman, J. A., Davis, M., Finkbeiner, D. P., & Gerke, B. F. 2012,ASCL. http://ascl.net/1203.003

Davies, R. L., F¨orster Schreiber, N. M., Ubler, H., et al. 2019, ApJ, 873, 122, doi: ¨ 10.3847/1538-4357/ab06f1

Davis, M., Faber, S. M., Newman, J., et al. 2003, in Proc. SPIE, Vol. 4834, Discoveries and Research Prospects from 6- to 10-Meter-Class Telescopes II, ed.P. Guhathakurta, 161–172

Davis, M., Guhathakurta, P., Konidaris, N. P., et al. 2007, ApJ, 660, L1, doi: 10.1086/517931

Dayal, P., & Ferrara, A. 2018, Phys. Rep., 780, 1, doi: 10.1016/j.physrep.2018.10.002

de Vaucouleurs, G. 1948, Annales d’Astrophysique, 11, 247

Decarli, R., Walter, F., Venemans, B. P., et al. 2017, Nature, 545, 457, doi: 10.1038/nature22358

Dekel, A., & Birnboim, Y. 2006, MNRAS, 368, 2, doi: 10.1111/j.1365-2966.2006.10145.x

Du, X., Shapley, A. E., Martin, C. L., & Coil, A. L. 2016, ApJ, 829, 64, doi: 10.3847/0004-637X/829/2/64

Du, X., Shapley, A. E., Reddy, N. A., et al. 2018, ApJ, 860, 75, doi: 10.3847/1538-4357/aabfcf

Erb, D. K., Quider, A. M., Henry, A. L., & Martin, C. L. 2012, ApJ, 759, 26,doi: 10.1088/0004-637X/759/1/26

Erb, D. K., Steidel, C. C., Shapley, A. E., et al. 2006a, ApJ, 647, 128, doi: 10.1086/505341—. 2006b, ApJ, 646, 107, doi: 10.1086/504891

Erb, D. K., Steidel, C. C., Trainor, R. F., et al. 2014, ApJ, 795, 33, doi: 10.1088/0004-637X/795/1/33

Faber, S. M., Phillips, A. C., Kibrick, R. I., et al. 2003, in Proc. SPIE, Vol. 4841,Instrument Design and Performance for Optical/Infrared Ground-based Telescopes,ed. M. Iye & A. F. M. Moorwood, 1657–1669

Ferland, G. J., Korista, K. T., Verner, D. A., et al. 1998, PASP, 110, 761, doi: 10.1086/316190

Ferland, G. J., Porter, R. L., van Hoof, P. A. M., et al. 2013, RMxAA, 49, 137.https://arxiv.org/abs/1302.4485

Finley, H., Bouch´e, N., Contini, T., et al. 2017, A&A, 605, A118, doi: 10.1051/0004-6361/201730428

F¨orster Schreiber, N. M., Ubler, H., Davies, R. L., et al. 2019, ApJ, 875, 21, doi: ¨ 10.3847/1538-4357/ab0ca2

Freeman, K. C. 2017, ARA&A, 55, 1, doi: 10.1146/annurev-astro-091916-055249

Fujimoto, S., Ouchi, M., Ferrara, A., et al. 2019, arXiv e-prints. https://arxiv.org/abs/1902.06760

Fukugita, M., Ichikawa, T., Gunn, J. E., et al. 1996, AJ, 111, 1748, doi: 10.1086/117915

Gallerani, S., Pallottini, A., Feruglio, C., et al. 2018, MNRAS, 473, 1909, doi: 10.1093/mnras/stx2458

Genzel, R., Tacconi, L. J., Lutz, D., et al. 2015, ApJ, 800, 20, doi: 10.1088/0004-637X/800/1/20

Griffiths, R. E., Ptak, A., Feigelson, E. D., et al. 2000, Science, 290, 1325, doi: 10.1126/science.290.5495.1325

Grimes, J. P., Heckman, T., Aloisi, A., et al. 2009, ApJS, 181, 272, doi: 10.1088/0067-0049/181/1/272

Gunn, J. E., Carr, M., Rockosi, C., et al. 1998, AJ, 116, 3040, doi: 10.1086/300645

Gunn, J. E., Siegmund, W. A., Mannery, E. J., et al. 2006, AJ, 131, 2332, doi: 10.1086/500975

Harikane, Y., Ouchi, M., Ono, Y., et al. 2016, ApJ, 821, 123, doi: 10.3847/0004-637X/821/2/123—. 2018, PASJ, 70, S11, doi: 10.1093/pasj/psx097

Hashimoto, T., Verhamme, A., Ouchi, M., et al. 2015, ApJ, 812, 157, doi: 10.1088/0004-637X/812/2/157

Hashimoto, T., Inoue, A. K., Mawatari, K., et al. 2019, PASJ, 71, 71, doi: 10.1093/pasj/psz049

Hayward, C. C., & Hopkins, P. F. 2015, ArXiv e-prints. https://arxiv.org/abs/1510.05650

Heckman, T. M. 2002, in Astronomical Society of the Pacific Conference Series, Vol.254, Extragalactic Gas at Low Redshift, ed. J. S. Mulchaey & J. T. Stocke, 292

Heckman, T. M., Alexandroff, R. M., Borthakur, S., Overzier, R., & Leitherer, C.2015, ApJ, 809, 147, doi: 10.1088/0004-637X/809/2/147

Heckman, T. M., Armus, L., & Miley, G. K. 1990, ApJS, 74, 833, doi: 10.1086/191522

Heckman, T. M., & Borthakur, S. 2016, ApJ, 822, 9, doi: 10.3847/0004-637X/822/1/9

Heckman, T. M., Lehnert, M. D., Strickland, D. K., & Armus, L. 2000, ApJS, 129,493, doi: 10.1086/313421

Heckman, T. M., Borthakur, S., Overzier, R., et al. 2011, ApJ, 730, 5, doi: 10.1088/0004-637X/730/1/5

Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003, ApJ,591, 288, doi: 10.1086/375341

Ilbert, O., McCracken, H. J., Le F`evre, O., et al. 2013, A&A, 556, A55, doi: 10.1051/0004-6361/201321100

Inoue, A. K., Tamura, Y., Matsuo, H., et al. 2016, Science, 352, 1559, doi: 10.1126/science.aaf0714

Ipavich, F. M. 1975, ApJ, 196, 107, doi: 10.1086/153397

Ishigaki, M., Kawamata, R., Ouchi, M., et al. 2018, ApJ, 854, 73, doi: 10.3847/1538-4357/aaa544

Ishikawa, S., Kashikawa, N., Toshikawa, J., et al. 2017, ApJ, 841, 8, doi: 10.3847/1538-4357/aa6d64

Jones, T., Stark, D. P., & Ellis, R. S. 2012, ApJ, 751, 51, doi: 10.1088/0004-637X/751/1/51

Jones, T. A., Ellis, R. S., Schenker, M. A., & Stark, D. P. 2013, ApJ, 779, 52,doi: 10.1088/0004-637X/779/1/52

Kacprzak, G. G., Martin, C. L., Bouch´e, N., et al. 2014, ApJ, 792, L12, doi: 10.1088/2041-8205/792/1/L12

Karman, W., Caputi, K. I., Caminha, G. B., et al. 2017, A&A, 599, A28, doi: 10.1051/0004-6361/201629055

Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003a, MNRAS, 341, 33,doi: 10.1046/j.1365-8711.2003.06291.x

Kauffmann, G., Heckman, T. M., Tremonti, C., et al. 2003b, MNRAS, 346, 1055,doi: 10.1111/j.1365-2966.2003.07154.x

Kimm, T., Haehnelt, M., Blaizot, J., et al. 2018, ArXiv e-prints. https://arxiv.org/abs/1801.04952

Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 511, doi: 10.1146/annurev-astro-082708-101811

Kornei, K. A., Shapley, A. E., Martin, C. L., et al. 2012, ApJ, 758, 135, doi: 10.1088/0004-637X/758/2/135

Kroupa, P. 2001, MNRAS, 322, 231, doi: 10.1046/j.1365-8711.2001.04022.x

Larson, R. B. 1974, MNRAS, 169, 229, doi: 10.1093/mnras/169.2.229

Law, D. R., Steidel, C. C., Shapley, A. E., et al. 2012, ApJ, 759, 29, doi: 10.1088/0004-637X/759/1/29

Leethochawalit, N., Jones, T. A., Ellis, R. S., Stark, D. P., & Zitrin, A. 2016, ApJ,831, 152, doi: 10.3847/0004-637X/831/2/152

Lehnert, M. D., & Heckman, T. M. 1996a, ApJ, 462, 651, doi: 10.1086/177180—. 1996b, ApJ, 472, 546, doi: 10.1086/178086

Leitherer, C., Ortiz Ot´alvaro, P. A., Bresolin, F., et al. 2010, ApJS, 189, 309, doi: 10.1088/0067-0049/189/2/309

Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999, ApJS, 123, 3, doi: 10.1086/313233

Lin, L., Koo, D. C., Weiner, B. J., et al. 2007, ApJ, 660, L51, doi: 10.1086/517919

Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415, doi: 10.1146/annurev-astro-081811-125615

Maraston, C., Nieves Colmen´arez, L., Bender, R., & Thomas, D. 2009, A&A, 493,425, doi: 10.1051/0004-6361:20066907

Maraston, C., & Str¨omb¨ack, G. 2011, MNRAS, 418, 2785, doi: 10.1111/j.1365-2966.2011.19738.x

Markwardt, C. B. 2009, in Astronomical Society of the Pacific Conference Series, Vol.411, Astronomical Data Analysis Software and Systems XVIII, ed. D. A. Bohlender,D. Durand, & P. Dowler, 251

Marrone, D. P., Spilker, J. S., Hayward, C. C., et al. 2018, Nature, 553, 51, doi: 10.1038/nature24629

Martin, C. L. 1998, ApJ, 506, 222, doi: 10.1086/306219—. 2005, ApJ, 621, 227, doi: 10.1086/427277—. 2006, ApJ, 647, 222, doi: 10.1086/504886

Martin, C. L., & Bouch´e, N. 2009, ApJ, 703, 1394, doi: 10.1088/0004-637X/703/2/1394

Martin, C. L., Shapley, A. E., Coil, A. L., et al. 2012, ApJ, 760, 127, doi: 10.1088/0004-637X/760/2/127

McLean, I. S., Becklin, E. E., Bendiksen, O., et al. 1998, in Proc. SPIE, Vol. 3354,Infrared Astronomical Instrumentation, ed. A. M. Fowler, 566–578

Mitchell, P. D., Blaizot, J., Devriendt, J., et al. 2018, MNRAS, 474, 4279, doi: 10.1093/mnras/stx3017

Mitra, S., Dav´e, R., & Finlator, K. 2015, MNRAS, 452, 1184, doi: 10.1093/mnras/stv1387

Mo, H. J., & White, S. D. M. 2002, MNRAS, 336, 112, doi: 10.1046/j.1365-8711.2002.05723.x

Morton, D. C. 1991, ApJS, 77, 119, doi: 10.1086/191601—. 2003, ApJS, 149, 205, doi: 10.1086/377639

Mostek, N., Coil, A. L., Moustakas, J., Salim, S., & Weiner, B. J. 2012, ApJ, 746,124, doi: 10.1088/0004-637X/746/2/124

Muratov, A. L., Kereˇs, D., Faucher-Gigu`ere, C.-A., et al. 2015, MNRAS, 454, 2691,doi: 10.1093/mnras/stv2126

Murray, N., Martin, C. L., Quataert, E., & Thompson, T. A. 2007, ApJ, 660, 211,doi: 10.1086/512660

Murray, N., Quataert, E., & Thompson, T. A. 2005, ApJ, 618, 569, doi: 10.1086/426067

Muzahid, S., Kacprzak, G. G., Churchill, C. W., et al. 2015, ApJ, 811, 132, doi: 10.1088/0004-637X/811/2/132

Nakajima, K., & Ouchi, M. 2014, MNRAS, 442, 900, doi: 10.1093/mnras/stu902

Nelson, D., Pillepich, A., Springel, V., et al. 2019, MNRAS, 2010, doi: 10.1093/mnras/stz2306

Newman, J. A., Cooper, M. C., Davis, M., et al. 2013, ApJS, 208, 5, doi: 10.1088/0067-0049/208/1/5

Oke, J. B., Cohen, J. G., Carr, M., et al. 1995, PASP, 107, 375, doi: 10.1086/133562

Oppenheimer, B. D., & Dav´e, R. 2006, MNRAS, 373, 1265, doi: 10.1111/j.1365-2966.2006.10989.x

Oppenheimer, B. D., Dav´e, R., Kereˇs, D., et al. 2010, MNRAS, 406, 2325, doi: 10.1111/j.1365-2966.2010.16872.x

Padilla, N. D., & Strauss, M. A. 2008, MNRAS, 388, 1321, doi: 10.1111/j.1365-2966.2008.13480.x

Pavesi, R., Riechers, D. A., Capak, P. L., et al. 2016, ApJ, 832, 151, doi: 10.3847/0004-637X/832/2/151

Prochaska, J. X., Kasen, D., & Rubin, K. 2011, ApJ, 734, 24, doi: 10.1088/0004-637X/734/1/24

Read, J. I., & Trentham, N. 2005, Philosophical Transactions of the Royal Society ofLondon Series A, 363, doi: 10.1098/rsta.2005.1648

Reddy, N. A., Steidel, C. C., Pettini, M., et al. 2008, ApJS, 175, 48, doi: 10.1086/521105

Roberts-Borsani, G. W., & Saintonge, A. 2019, MNRAS, 482, 4111, doi: 10.1093/mnras/sty2824

Robertson, B. E., Ellis, R. S., Furlanetto, S. R., & Dunlop, J. S. 2015, ApJ, 802, L19,doi: 10.1088/2041-8205/802/2/L19

Rockosi, C., Stover, R., Kibrick, R., et al. 2010, in Proc. SPIE, Vol. 7735, Groundbased and Airborne Instrumentation for Astronomy III, 77350R

Rubin, K. H. R., Prochaska, J. X., Koo, D. C., et al. 2014, ApJ, 794, 156, doi: 10.1088/0004-637X/794/2/156

Rubin, K. H. R., Weiner, B. J., Koo, D. C., et al. 2010, ApJ, 719, 1503, doi: 10.1088/0004-637X/719/2/1503

Rupke, D. 2018, Galaxies, 6, 138, doi: 10.3390/galaxies6040138

Rupke, D. S., Veilleux, S., & Sanders, D. B. 2002, ApJ, 570, 588, doi: 10.1086/339789—. 2005a, ApJS, 160, 87, doi: 10.1086/432886—. 2005b, ApJS, 160, 115, doi: 10.1086/432889

Salim, S., Rich, R. M., Charlot, S., et al. 2007, ApJS, 173, 267, doi: 10.1086/519218

Salpeter, E. E. 1955, ApJ, 121, 161, doi: 10.1086/145971

S´anchez-Bl´azquez, P., Peletier, R. F., Jim´enez-Vicente, J., et al. 2006, MNRAS, 371,703, doi: 10.1111/j.1365-2966.2006.10699.x

Sato, T., Martin, C. L., Noeske, K. G., Koo, D. C., & Lotz, J. M. 2009, ApJ, 696,214, doi: 10.1088/0004-637X/696/1/214

Savage, B. D., & Sembach, K. R. 1996, ARA&A, 34, 279, doi: 10.1146/annurev.astro.34.1.279

Scannapieco, E., & Br¨uggen, M. 2015, ApJ, 805, 158, doi: 10.1088/0004-637X/805/2/158

Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, MNRAS, 446, 521, doi: 10.1093/mnras/stu2058

Schroetter, I., Bouch´e, N., P´eroux, C., et al. 2015, ApJ, 804, 83, doi: 10.1088/0004-637X/804/2/83

Schroetter, I., Bouch´e, N., Wendt, M., et al. 2016, ApJ, 833, 39, doi: 10.3847/1538-4357/833/1/39

Schroetter, I., Bouch´e, N. F., Zabl, J., et al. 2019, MNRAS, 490, 4368, doi: 10.1093/mnras/stz2822

Schwartz, C. M., & Martin, C. L. 2004, ApJ, 610, 201, doi: 10.1086/421546

Schwartz, C. M., Martin, C. L., Chandar, R., et al. 2006, ApJ, 646, 858, doi: 10.1086/504961

Scoville, N., Aussel, H., Brusa, M., et al. 2007, ApJS, 172, 1, doi: 10.1086/516585

Shapley, A. E., Steidel, C. C., Pettini, M., & Adelberger, K. L. 2003, ApJ, 588, 65,doi: 10.1086/373922

Sharma, M., Theuns, T., Frenk, C., et al. 2017, MNRAS, 468, 2176, doi: 10.1093/mnras/stx578

Shibuya, T., Ouchi, M., & Harikane, Y. 2015, ApJS, 219, 15, doi: 10.1088/0067-0049/219/2/15

Shibuya, T., Ouchi, M., Nakajima, K., et al. 2014, ApJ, 788, 74, doi: 10.1088/0004-637X/788/1/74

Somerville, R. S., & Dav´e, R. 2015, ARA&A, 53, 51, doi: 10.1146/annurev-astro-082812-140951

Speagle, J. S., Steinhardt, C. L., Capak, P. L., & Silverman, J. D. 2014, ApJS, 214,15, doi: 10.1088/0067-0049/214/2/15

Spitzer, L. 1978, Physical processes in the interstellar medium (New York WileyInterscience), doi: 10.1002/9783527617722

Springel, V., & Hernquist, L. 2003, MNRAS, 339, 289, doi: 10.1046/j.1365-8711.2003.06206.x

Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Nature, 435, 629, doi: 10.1038/nature03597

Steidel, C. C., Adelberger, K. L., Shapley, A. E., et al. 2003, ApJ, 592, 728, doi: 10.1086/375772

Steidel, C. C., Erb, D. K., Shapley, A. E., et al. 2010, ApJ, 717, 289, doi: 10.1088/0004-637X/717/1/289

Steidel, C. C., Shapley, A. E., Pettini, M., et al. 2004, ApJ, 604, 534, doi: 10.1086/381960

Steidel, C. C., Strom, A. L., Pettini, M., et al. 2016, ApJ, 826, 159, doi: 10.3847/0004-637X/826/2/159

Steidel, C. C., Rudie, G. C., Strom, A. L., et al. 2014, ApJ, 795, 165, doi: 10.1088/0004-637X/795/2/165

Steinhardt, C. L., Speagle, J. S., Capak, P., et al. 2014, ApJ, 791, L25, doi: 10.1088/2041-8205/791/2/L25

Strauss, M. A., Weinberg, D. H., Lupton, R. H., et al. 2002, AJ, 124, 1810, doi: 10.1086/342343

Strickland, D. K., & Heckman, T. M. 2009, ApJ, 697, 2030, doi: 10.1088/0004-637X/697/2/2030

Swinbank, M., Harrison, C., Tiley, A., et al. 2019, arXiv e-prints. https://arxiv.org/abs/1906.05311

Tacchella, S., Bose, S., Conroy, C., Eisenstein, D. J., & Johnson, B. D. 2018, ApJ,868, 92, doi: 10.3847/1538-4357/aae8e0

Tanner, R., Cecil, G., & Heitsch, F. 2016, ApJ, 821, 7, doi: 10.3847/0004-637X/821/1/7

Trainor, R. F., Steidel, C. C., Strom, A. L., & Rudie, G. C. 2015, ApJ, 809, 89,doi: 10.1088/0004-637X/809/1/89

Tremonti, C. A., Moustakas, J., & Diamond-Stanic, A. M. 2007, ApJ, 663, L77,doi: 10.1086/520083

Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, ApJ, 613, 898, doi: 10.1086/423264

Tumlinson, J., Peeples, M. S., & Werk, J. K. 2017, ARA&A, 55, 389, doi: 10.1146/annurev-astro-091916-055240

V´azquez, G. A., Leitherer, C., Heckman, T. M., et al. 2004, ApJ, 600, 162, doi: 10.1086/379805

Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, ARA&A, 43, 769, doi: 10.1146/annurev.astro.43.072103.150610

Wadepuhl, M., & Springel, V. 2011, MNRAS, 410, 1975, doi: 10.1111/j.1365-2966.2010.17576.x

Walter, F., Riechers, D., Novak, M., et al. 2018, ApJ, 869, L22, doi: 10.3847/2041-8213/aaf4fa

Weiner, B. J., Coil, A. L., Prochaska, J. X., et al. 2009, ApJ, 692, 187, doi: 10.1088/0004-637X/692/1/187

Weller, J., Ostriker, J. P., Bode, P., & Shaw, L. 2005, MNRAS, 364, 823, doi: 10.1111/j.1365-2966.2005.09602.x

Willmer, C. N. A., Faber, S. M., Koo, D. C., et al. 2006, ApJ, 647, 853, doi: 10.1086/505455

York, D. G., Adelman, J., Anderson, Jr., J. E., et al. 2000, AJ, 120, 1579, doi: 10.1086/301513

Zahid, H. J., Geller, M. J., Kewley, L. J., et al. 2013, ApJ, 771, L19, doi: 10.1088/2041-8205/771/2/L19

Zhang, D. 2018, Galaxies, 6, 114, doi: 10.3390/galaxies6040114

Zhu, G. B., Comparat, J., Kneib, J.-P., et al. 2015, ApJ, 815, 48, doi: 10.1088/0004-637X/815/1/48

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る