リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「インド産スパイスを利用したアルツハイマー型認知症予防に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

インド産スパイスを利用したアルツハイマー型認知症予防に関する研究

吉岡 百合 近畿大学

2023.01.20

概要

認知症とは、思考力、記憶力、論理的推理力といった認知機能や行動能力が、日常の生活や活動を妨げる程度にまで失われる状態を指す1。アルツハイマー型認知症(AD)は、最も一般的な神経変性疾患であり、世界では認知症の約 50~60%を占めると報告されている。現在世界中で5000 万人以上の罹患者が報告され、高齢者人口の増加に伴い、その数は継続的に増加している2。ADの主な特徴は、脳内の老人班と神経原線維変化や、脳内の神経細胞管の連結の消失であるが、その発症のメカニズムは完全には解明されていない3。ADの発症メカニズムで有力なアミロイドβ(Aβ)仮説によると、ADは発症の20年以上前から始まり、これに10年遅れてタウ蛋白の蓄積が起こり、さらに数年遅れて軽度認知障害(MCI, mild cognitive impairment)が始まり、最終的にADが発症する4。現時点では、AD 発症後に脳機能を正常状態に戻すことは不可能であるため、より早期段階での予防が必要である。

予防とは未だ症状が出ていない状況下で、そうならないために前もって防止することであり、食品に含まれる機能性成分でAD 予防を実現しようとする試みは世界中で行われている。疫学調査の結果、インドでは認知症の発症例が少ないことが報告されていることから5、インドで良く食され、安全で薬効も期待できる素材として、食品や香辛料などとして使用されるスパイスに着目した。

ニンニク(Allium sativum L.)は主に鱗茎を食品として幅広く利用されており、 AD 予防に関連する報告を含めさまざまな生理活性を示すことが知られている6。これまでの研究では、ニンニクの水溶性成分に、AD 予防活性がある可能性が示唆されている7-10。しかしながら、ニンニクの風味を特徴づける脂溶性成分に着 目した研究は少ない。脂溶性成分の中でも特に揮発性成分は、精油と呼ばれ、 食品に「ニンニクらしさ」を付与する重要な成分として世界的に使用されている。この揮発性精油成分の機能性を理解することにより、安全で風味も良い新たな機能性素材の創出につながると期待される。

第1 章ではニンニク精油を用いてAβ 産生の上流過程に位置するβ-セクレターゼ(BACE)および認知機能の維持に重要な役割を果たすコリンエステラーゼ(ChE)を対象とした酵素阻害作用を評価し、有効成分を明らかにした。さらに経口投与した有効成分の血清、肝臓および脳への移行性について、マウスを用いて評価した。

AD 関連酵素に対し阻害効果を示したニンニク精油成分のいくつかはニンニク臭に関与するものであった。このことは、これらを摂取した後長時間続く臭いが問題となり、積極的な摂取の障害となる可能性が考えられた。ニンニクを摂取した後の口臭は、食べた直後の臭いと数時間後から発生する臭いがあると考えられている。まず口腔内のニンニクの残留物は一般的な口臭の元となるmethyl mercaptan(MM)および硫化水素を増加させるとともに、胃で消化された際に発生したallyl mercaptan(AM)やallyl methyl sulfide(AMS)が呼気として放出され口臭の原因になるほか、血流を通じて汗腺や皮脂腺から排泄され体臭となる11。このようにニンニクの不快臭は摂食後の代謝によって、さまざまな化合物に変換されるなど単一の化合物ではなく複雑である12-13。そこで第 2 章ではニンニク精油成分の摂取後に発生するニンニク臭について、制御可能かを評価した。そこでMMに消臭効果を持つブラッククミン種子精油(BCO, black cumin essential oil)を用いて、ニンニクを含む食品の摂取後口臭の原因となっている揮発性含硫化合物への有効性の評価と消臭メカニズムについて検討した。

認知症は、さまざまな因子が複合的に作用し発症すると考えられている。その中の一つとして肥満が挙げられ、肥満と認知症の関連は多く研究されている。肥満者は短期記憶の中枢領域である海馬に炎症や委縮が生じやすいことが報告されている14。また食餌性肥満マウスでは、脳内免疫細胞のミクログリアが血液脳関門を傷害し、脳内炎症の亢進と認知機能の低下が報告されている15。さらに肥満はインスリン抵抗性を誘発することが知られている。インスリン抵抗性は、高脂肪食の摂取や肥満、運動不足などの要因により、脂肪組織や肝臓、筋肉などの代謝に関与する臓器に慢性的な炎症やストレスが生じ、インスリンの細胞内へのシグナル伝達が阻害されることで起こる。脳でもこのインスリン抵抗性が起こっており、AD患者の脳ではインスリンが受容体に結合してもシグナル伝達をうまく起こせないという報告があるが、詳しいメカニズムは十分には分かっていない16。ADモデルマウスに高脂肪食を与えることでADの原因とされるAβ 蓄積が増加するという報告もあり、肥満がAD 予防に悪影響を与えることが明らかとなっている17。ストレプトゾトシンにより糖尿病を誘発したモデルマウスでは、ニンニクやその成分により糖尿病の症状やそれに伴う認知機能の改善が報告されている7, 18-20。これらの報告より、AD 予防にはAD 関連酵素阻害作用を示すものだけでなく、肥満を避けることも重要である。そこで、第 3 章ではショウガ科スパイスを対象に脂肪吸収抑制および糖吸収抑制効果の有無を検討し、その中でも高い酵素阻害作用を示したマンゴージンジャー(Curcuma amada Roxb.)を対象に有効成分の検討を行った。さらに、マウスに対して高脂肪食と合わせてマンゴージンジャー抽出物を与え、高脂肪食によって誘発される肥満を抑制することが可能か検討した。その際使用したマンゴージンジャー抽出物は食品として流通し、かつサプリメントとしての利用を考慮し、超臨界 CO2抽出により有効成分を高純度に含有するものを使用した。

参考文献

1. Duong, S.; Patel, T.; Chang, F., Dementia: What pharmacists need to know. Can Pharm J (Ott) 2017, 150 (2), 118-129.

2. Christina, P., World Alzheimer Report 2018, The state of the art of dementia researh: New frontiers. . Alzheimer’s Disease international 2018, 1-48.

3. Bateman, R. J.; Xiong, C.; Benzinger, T. L.; Fagan, A. M.; Goate, A.; Fox, N. C.; Marcus, D. S.; Cairns, N. J.; Xie, X.; Blazey, T. M.; Holtzman, D. M.; Santacruz, A.; Buckles, V.; Oliver, A.; Moulder, K.; Aisen, P. S.; Ghetti, B.; Klunk, W. E.; McDade, E.; Martins, R. N.; Masters, C. L.; Mayeux, R.; Ringman, J. M.; Rossor, M. N.; Schofield, P. R.; Sperling, R. A.; Salloway, S.; Morris, J. C.; Dominantly Inherited Alzheimer, N., Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 2012, 367 (9), 795-804.

4. Jack, C. R., Jr.; Knopman, D. S.; Jagust, W. J.; Petersen, R. C.; Weiner, M. W.; Aisen, P. S.; Shaw, L. M.; Vemuri, P.; Wiste, H. J.; Weigand, S. D.; Lesnick, T. G.; Pankratz, V. S.; Donohue, M. C.; Trojanowski, J. Q., Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013, 12 (2), 207-16.

5. Chandra, V.; Pandav, R.; Dodge, H. H.; Johnston, J. M.; Belle, S. H.; DeKosky, S. T.; Ganguli, M., Incidence of Alzheimer's disease in a rural community in India: the Indo-US study. Neurology 2001, 57 (6), 985-9.

6. Agarwal, K. C., Therapeutic actions of garlic constituents. Med Res Rev 1996, 16 (1), 111-24.

7. Sarkaki, A.; Valipour Chehardacheric, S.; Farbood, Y.; Mansouri, S. M.; Naghizadeh, B.; Basirian, E., Effects of fresh, aged and cooked garlic extracts on short- and long-term memory in diabetic rats. Avicenna J Phytomed 2013, 3 (1), 45-55.

8. Borek, C., Garlic reduces dementia and heart-disease risk. J. Nutr. 2006, 136 (3 Suppl), 810S-812S.

9. Javed, H.; Khan, M. M.; Khan, A.; Vaibhav, K.; Ahmad, A.; Khuwaja, G.; Ahmed, M. E.; Raza, S. S.; Ashafaq, M.; Tabassum, R.; Siddiqui, M. S.; El-Agnaf, O. M.; Safhi, M. M.; Islam, F., S-allyl cysteine attenuates oxidative stress associated cognitive impairment and neurodegeneration in mouse model of streptozotocin-induced experimental dementia of Alzheimer's type. Brain Res. 2011, 1389, 133-42.

10. Gupta, V. B.; Indi, S. S.; Rao, K. S., Garlic extract exhibits antiamyloidogenic activity on amyloid-beta fibrillogenesis: relevance to Alzheimer's disease. Phytother. Res. 2009, 23 (1), 111-5.

11. Rosen, R. T.; Hiserodt, R. D.; Fukuda, E. K.; Ruiz, R. J.; Zhou, Z.; Lech, J.; Rosen, S. L.; Hartman, T. G., Determination of allicin, S-allylcysteine and volatile metabolites of garlic in breath, plasma or simulated gastric fluids. J. Nutr. 2001, 131 (3s), 968S-71S.

12. Egen-Schwind, C.; Eckard, R.; Kemper, F. H., Metabolism of garlic constituents in the isolated perfused rat liver. Planta Med 1992, 58 (4), 301-5.

13. Sato, S.; Sekine, Y.; Kakumu, Y.; Hiramoto, T., Measurement of diallyl disulfide and allyl methyl sulfide emanating from human skin surface and influence of ingestion of grilled garlic. Sci Rep 2020, 10 (1), 465.

14. 益崎裕章、岡本士毅, 肥満症に伴う認知機能障害 ─脳科学基礎研究の動向. 肥満研究 2020, 26 (2).

15. Haruwaka, K.; Ikegami, A.; Tachibana, Y.; Ohno, N.; Konishi, H.; Hashimoto, A.; Matsumoto, M.; Kato, D.; Ono, R.; Kiyama, H.; Moorhouse, A. J.; Nabekura, J.; Wake, H., Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 2019, 10 (1), 5816.

16. Umegaki, H., Insulin resistance in the brain: A new therapeutic target for Alzheimer's disease. J Diabetes Investig 2013, 4 (2), 150-1.

17. Wakabayashi, T.; Yamaguchi, K.; Matsui, K.; Sano, T.; Kubota, T.; Hashimoto, T.; Mano, A.; Yamada, K.; Matsuo, Y.; Kubota, N.; Kadowaki, T.; Iwatsubo, T., Differential effects of diet- and genetically-induced brain insulin resistance on amyloid pathology in a mouse model of Alzheimer's disease. Mol Neurodegener 2019, 14 (1), 15.

18. Yang, H. B.; Liu, H. M.; Yan, J. C.; Lu, Z. Y., Effect of Diallyl Trisulfide on Ischemic Tissue Injury and Revascularization in a Diabetic Mouse Model. J Cardiovasc Pharmacol 2018, 71 (6), 367-374.

19. Sujithra, K.; Srinivasan, S.; Indumathi, D.; Vinothkumar, V., Allyl methyl sulfide, an organosulfur compound alleviates hyperglycemia mediated hepatic oxidative stress and inflammation in streptozotocin - induced experimental rats. Biomed Pharmacother 2018, 107, 292-302.

20. Sujithra, K.; Srinivasan, S.; Indumathi, D.; Vinothkumar, V., Allyl methyl sulfide, a garlic active component mitigates hyperglycemia by restoration of circulatory antioxidant status and attenuating glycoprotein components in streptozotocin-induced experimental rats. Toxicol. Mech. Methods 2019, 29 (3), 165-176.

21. Terry, A. V., Jr.; Buccafusco, J. J., The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 2003, 306 (3), 821-7.

22. Bruscoli, M.; Lovestone, S., Is MCI really just early dementia? A systematic review of conversion studies. Int Psychogeriatr 2004, 16 (2), 129-40.

23. Ishikawa, T.; Ikeda, M., Mild cognitive impairment in a population-based epidemiological study. Psychogeriatrics 2007, 7 (3), 104-108.

24. Malek-Ahmadi, M., Reversion From Mild Cognitive Impairment to Normal Cognition: A Meta-Analysis. Alzheimer Dis Assoc Disord 2016, 30 (4), 324-330.

25. Shimada, H.; Makizako, H.; Doi, T.; Lee, S.; Lee, S., Conversion and Reversion Rates in Japanese Older People With Mild Cognitive Impairment. J Am Med Dir Assoc 2017, 18 (9), 808 e1-808 e6.

26. Birks, J., Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst Rev 2006, (1), CD005593.

27. Silva-Islas, C. A.; Chánez-Cárdenas, M. E.; Barrera-Oviedo, D.; Ortiz-Plata, A.; Pedraza-Chaverri, J.; Maldonado, P. D., Diallyl Trisulfide Protects Rat Brain Tissue against the Damage Induced by Ischemia-Reperfusion through the Nrf2 Pathway. Antioxidants 2019, 8 (9), 410.

28. Murata, K.; Matsumura, S.; Yoshioka, Y.; Ueno, Y.; Matsuda, H., Screening of beta-secretase and acetylcholinesterase inhibitors from plant resources. J Nat Med 2015, 69 (1), 123-9.

29. Kawamoto, H.; Takeshita, F.; Murata, K., Inhibitory Effects of Essential Oil Extracts From Panax ginseng Against β-Secretase and Cholinesterases. Natural Product Communications 2019, 14 (8), 1934578X19873443.

30. Lawson, L. D.; Wang, Z. J.; Hughes, B. G., Identification and HPLC quantitation of the sulfides and dialk(en)yl thiosulfinates in commercial garlic products. Planta Med 1991, 57 (4), 363-70.

31. Cuicui Gao, X. J., Haina Wang, Zhongxi Zhao and Weihong Wang, Drug Metabolism and Pharmacokinetics of Organosulfur Compounds from Garlic. Journal of Drug Metabolism & Toxicology 2013, 04, 4-5.

32. Germain, E.; Auger, J.; Ginies, C.; Siess, M. H.; Teyssier, C., In vivo metabolism of diallyl disulphide in the rat: identification of two new metabolites. Xenobiotica 2002, 32 (12), 1127-38.

33. Jin, L.; Baillie, T. A., Metabolism of the chemoprotective agent diallyl sulfide to glutathione conjugates in rats. Chem. Res. Toxicol. 1997, 10 (3), 318-27.

34. Germain, E.; Chevalier, J.; Siess, M. H.; Teyssier, C., Hepatic metabolism of diallyl disulphide in rat and man. Xenobiotica 2003, 33 (12), 1185-99.

35. Liu, Y.; Li, A.; Jiang, X.; Zhu, X.; Feng, X.; Sun, X.; Zhao, Z., Metabolism and pharmacokinetics studies of allyl methyl disulfide in rats. Xenobiotica 2019, 49 (1), 90-97.

36. Germain, E.; Semon, E.; Siess, M. H.; Teyssier, C., Disposition and metabolism of dipropyl disulphide in vivo in rat. Xenobiotica 2008, 38 (1), 87-97.

37. Sun, X.; Guo, T.; He, J.; Zhao, M.; Yan, M.; Cui, F.; Deng, Y., Determination of the concentration of diallyl trisulfide in rat whole blood using gas chromatography with electron-capture detection and identification of its major metabolite with gas chromatography mass spectrometry. Yakugaku Zasshi 2006, 126 (7), 521-7.

38. Mahmoodi, M. R.; Mohammadizadeh, M., Therapeutic potentials of Nigella sativa preparations and its constituents in the management of diabetes and its complications in experimental animals and patients with diabetes mellitus: A systematic review. Complement Ther Med 2020, 50, 102391.

39. Haggard, H. W.; Greenberg, L. A., Breath Odors from Alliaceous Substances. Journal of the American Medical Association 1935, 104 (24), 2160-2163.

40. Nakatani, N.; Miura, K.; Inagaki, T., Structure of New Deodorant Biphenyl Compounds from Thyme (Thymus vulgaris L.) and Their Activity Against Methyl Mercaptan. Agric. Biol. Chem. 1989, 53 (5), 1375-1381.

41. Yasuda, H.; Arakawa, T., Deodorizing Mechanism of (–)-Epigallocatechin Gallate against Methyl Mercaptan. Biosci., Biotechnol., Biochem. 2014, 59 (7), 1232-1236.

42. Kim, Y.; Jang, S.-J.; Kim, H.-R.; Kim, S.-B., Deodorizing, antimicrobial and glucosyltransferase inhibitory activities of polyphenolics from biosource. Korean Journal of Chemical Engineering 2017, 34 (5), 1400-1404.

43. Nakasugi, T.; Murakawa, T.; Shibuya, K.; Morimoto, M., Deodorizing Substance in Black Cumin (Nigella sativa L.) Seed Oil. J Oleo Sci 2017, 66 (8), 877-882.

44. Negishi, O.; Negishi, Y., Enzymatic Deodorization with Raw Fruits, Vegetables and Mushrooms. Food Science and Technology Research 1999, 5 (2), 176-180.

45. Zhou, W.; Zou, X.; Lu, Y.; Xia, L.; Huang, C.; Shen, C.; Chen, X.; Chu, Y., Characterization of Volatiles in Garlic and in Exhaled Breath after Garlic Ingestion by On-line Atmospheric Pressure Photoionization Quadrupole Time-of-Flight Mass Spectrometry. Food Science and Technology Research 2017, 23 (4), 613-620.

46. Taucher, J.; Hansel, A.; Jordan, A.; Lindinger, W., Analysis of Compounds in Human Breath after Ingestion of Garlic Using Proton-Transfer-Reaction Mass Spectrometry. J. Agric. Food Chem. 1996, 44 (12), 3778-3782.

47. Suarez, F.; Springfield, J.; Furne, J.; Levitt, M., Differentiation of mouth versus gut as site of origin of odoriferous breath gases after garlic ingestion. Am J Physiol 1999, 276 (2), G425-30.

48. Hansanugrum, A.; Barringer, S. A., Effect of milk on the deodorization of malodorous breath after garlic ingestion. J. Food Sci. 2010, 75 (6), C549-58.

49. Degen, L. P.; Phillips, S. F., Variability of gastrointestinal transit in healthy women and men. Gut 1996, 39 (2), 299-305.

50. Hellmig, S.; Von Schöning, F.; Gadow, C.; Katsoulis, S.; Hedderich, J.; Fölsch, U. R.; Stüber, E., Gastric emptying time of fluids and solids in healthy subjects determined by 13C breath tests: influence of age, sex and body mass index. J Gastroenterol Hepatol 2006, 21 (12), 1832-8.

51. G. Clemente, J., Analysis of Garlic Cultivars Using Head Space Solid Phase Microextrac-tion/Gas Chromatography/Mass Spectroscopy. The Open Food Science Journal 2012, 6 (1), 1-4.

52. Kita, N.; Fujimoto, K.; Nakajima, I.; Hayashi, R.; Shibuya, K., Screening test for deodorizing substances from marine algae and identification of phlorotannins as the effective ingredients in Eisenia bicyclis. J. Appl. Phycol. 1990, 2 (2), 155-162.

53. Elshafie, S. M. M., An Alternative to the Leuckart Method for the Conversion of Primary Amines into Thiols. Organic Preparations and Procedures International 1983, 15 (4), 225-231.

54. Chihi, A. W., W. P., Reaction of Dimethylsilylene with Allylic Methyl Sulfides. Inorg. Chem. 1981, 20, 2821-2824.

55. Chen, J. L.; Liu, C. Y., Separation of dialkyl sulfides by metallo-mesogenic stationary phases for complexation gas chromatography. J Chromatogr A 2007, 1161 (1-2), 269-74.

56. Swearingen, J. W., Jr.; Frankel, D. P.; Fuentes, D. E.; Saavedra, C. P.; Vasquez, C. C.; Chasteen, T. G., Identification of biogenic dimethyl selenodisulfide in the headspace gases above genetically modified Escherichia coli. Anal. Biochem. 2006, 348 (1), 115-22.

57. Chen, F.-E.; Lu, Y.-W.; He, Y.-P.; Luo, Y.-F.; Yan, M.-G., Tetrabutylammonium Peroxydisulfate in Organic Synthesis. Xii.[1] a Convenient and Practical Procedure for the Selective Oxidation of Thiols to Disulfides with Tetrabutylammonium Peroxydisulfate under Solvent-Free Conditions. Synthetic Communications 2009, 32 (22), 3487-3492.

58. Tamaki, T.; Sonoki, S., Volatile sulfur compounds in human expiration after eating raw or heat-treated garlic. J Nutr Sci Vitaminol (Tokyo) 1999, 45 (2), 213-22.

59. Munch, R.; Barringer, S. A., Deodorization of garlic breath volatiles by food and food components. J. Food Sci. 2014, 79 (4), C526-33.

60. Ronan, L.; Alexander-Bloch, A. F.; Wagstyl, K.; Farooqi, S.; Brayne, C.; Tyler, L. K.; Cam, C. A. N.; Fletcher, P. C., Obesity associated with increased brain age from midlife. Neurobiol. Aging 2016, 47, 63-70.

61. Lloret, A.; Monllor, P.; Esteve, D.; Cervera-Ferri, A.; Lloret, M.-A. Obesity as a Risk Factor for Alzheimer's Disease: Implication of Leptin and Glutamate 2019, p. 508. PubMed. (accessed 2019).

62. Bray, G. A.; Kim, K. K.; Wilding, J. P. H.; World Obesity, F., Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev 2017, 18 (7), 715-723.

63. 小川渉、宮崎滋, 肥満と肥満症の診断基準. 総合健診 2015, 42 (2), 301-306.

64. Ogden, C. L.; Carroll, M. D.; Kit, B. K.; Flegal, K. M., Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 2014, 311 (8), 806-14.

65. Karri, S.; Sharma, S.; Hatware, K.; Patil, K., Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed Pharmacother 2019, 110, 224-238.

66. Xia, D. Z.; Yu, X. F.; Wang, H. M.; Ren, Q. Y.; Chen, B. M., Anti-obesity and hypolipidemic effects of ethanolic extract from Alpinia officinarum Hance (Zingiberaceae) in rats fed high-fat diet. J. Med. Food 2010, 13 (4), 785-91.

67. Ho, J. N.; Jang, J. Y.; Yoon, H. G.; Kim, Y.; Kim, S.; Jun, W.; Lee, J., Anti-obesity effect of a standardised ethanol extract from Curcuma longa L. fermented with Aspergillus oryzae in ob/ob mice and primary mouse adipocytes. J. Sci. Food Agric. 2012, 92 (9), 1833-40.

68. Kapil, D.; Yadav, K.; Chaudhury, A., Anti-obesity mechanism of Curcuma longa L. -An over view. 2016, 7, 99-106.

69. Hewlings, S. J.; Kalman, D. S., Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6 (10).

70. Leong-Skornickova, J.; Šída, O.; Marhold, K., Back to types! Towards stability of names in Indian Curcuma L. (Zingiberaceae). Taxon 2010, 59, 269-282.

71. Alan Sheeja, D. B.; Nair, M. S., Phytochemical constituents of Curcuma amada. Biochem. Syst. Ecol. 2012, 44, 264-266.

72. Wahab, I. R.; Blagojevic, P. D.; Radulovic, N. S.; Boylan, F., Volatiles of Curcuma mangga Val. & Zijp (Zingiberaceae) from Malaysia. Chem. Biodivers. 2011, 8 (11), 2005-14.

73. Policegoudra, R. S.; Divakar, S.; Aradhya, S. M., Identification of difurocumenonol, a new antimicrobial compound from mango ginger (Curcuma amada Roxb.) rhizome. J. Appl. Microbiol. 2007, 102 (6), 1594-602.

74. Policegoudra, R. S.; Kumar, M. H.; Aradhya, M. S., Accumulation of bioactive compounds during growth and development of mango ginger (Curcuma amada Roxb.) rhizomes. J. Agric. Food Chem. 2007, 55 (20), 8105-11.

75. Policegoudra, R. S.; Aradhya, S. M.; Singh, L., Mango ginger (Curcuma amada Roxb.)--a promising spice for phytochemicals and biological activities. J Biosci 2011, 36 (4), 739-48.

76. Itokawa, H.; Morita, M.; Mihashi, S., Labdane and bisnorlabdane type diterpenes from Alpinia speciosa K. Schum. Chemical and Pharmaceutical Bulletin 1980, 28 (11), 3452-3454.

77. Toyota, M.; Ooiso, Y.; Kusuyama, T.; Asakawa, Y., Drimane-type sesquiterpenoids from the liverwort Diplophyllum serrulatum. Phytochemistry 1994, 35 (5), 1263-1265.

78. Singh, S.; Kumar, J. K.; Saikia, D.; Shanker, K.; Thakur, J. P.; Negi, A. S.; Banerjee, S., A bioactive labdane diterpenoid from Curcuma amada and its semisynthetic analogues as antitubercular agents. Eur J Med Chem 2010, 45 (9), 4379-82.

79. Kraus, G. A.; Roth, B., Synthetic studies toward verrucarol. 2. Synthesis of the AB ring system. The Journal of Organic Chemistry 1980, 45 (24), 4825-4830.

80. Kraus, G. A.; Taschner, M. J., Model studies for the synthesis of quassinoids. 1. Construction of the BCE ring system. The Journal of Organic Chemistry 1980, 45 (6), 1175-1176.

81. Chen, J.; Wu, Y.; Zou, J.; Gao, K., alpha-Glucosidase inhibition and antihyperglycemic activity of flavonoids from Ampelopsis grossedentata and the flavonoid derivatives. Bioorg. Med. Chem. 2016, 24 (7), 1488-94.

82. Toda, M.; Kawabata, J.; Kasai, T., Inhibitory effects of ellagi- and gallotannins on rat intestinal alpha-glucosidase complexes. Biosci Biotechnol Biochem 2001, 65 (3), 542-7.

83. Ikarashi, N.; Takeda, R.; Ito, K.; Ochiai, W.; Sugiyama, K., The inhibition of lipase and glucosidase activities by acacia polyphenol. Evid Based Complement Alternat Med 2011, 2011, 272075.

84. Hatano, T.; Yamashita, A.; Hashimoto, T.; Ito, H.; Kubo, N.; Yoshiyama, M.; Shimura, S.; Itoh, Y.; Okuda, T.; Yoshida, T., Flavan dimers with lipase inhibitory activity from Cassia nomame. Phytochemistry 1997, 46 (5), 893-900.

85. Patonah, H. A., I.K.; Rizka, V.; Euis, L, Potential alpha glucosidase inhibitor from selected Zingiberaceae family. Asian J. Pharm. Clin. Res 2016, 9, 164-167.

86. Du, Z. Y.; Liu, R. R.; Shao, W. Y.; Mao, X. P.; Ma, L.; Gu, L. Q.; Huang, Z. S.; Chan, A. S., Alpha-glucosidase inhibition of natural curcuminoids and curcumin analogs. Eur J Med Chem 2006, 41 (2), 213-8.

87. Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T., Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J Nutr Sci Vitaminol (Tokyo) 2006, 52 (2), 149-53.

88. Singh, S.; Singh, R.; Banerjee, S.; Negi, A. S.; Shanker, K., Determination of anti-tubercular agent in mango ginger (Curcuma amada Roxb.) by reverse phase HPLC-PDA-MS. Food Chem. 2012, 131 (1), 375-379.

89. Mahmoud, R. H.; Elnour, W. A., Comparative evaluation of the efficacy of ginger and orlistat on obesity management, pancreatic lipase and liver peroxisomal catalase enzyme in male albino rats. Eur Rev Med Pharmacol Sci 2013, 17 (1), 75-83.

90. Han, L. K.; Gong, X. J.; Kawano, S.; Saito, M.; Kimura, Y.; Okuda, H., [Antiobesity actions of Zingiber officinale Roscoe]. Yakugaku Zasshi 2005, 125 (2), 213-7.

91. Harinantenaina, L.; Matsunami, K.; Otsuka, H.; Kawahata, M.; Yamaguchi, K.; Asakawa, Y., Secondary metabolites of Cinnamosma madagascariensis and their alpha-glucosidase inhibitory properties. J. Nat. Prod. 2008, 71 (1), 123-6.

92. Abe, M.; Ozawa, Y.; Uda, Y.; Morimitsu, Y.; Nakamura, Y.; Osawa, T., A novel labdane-type trialdehyde from myoga (Zingiber mioga Roscoe) that potently inhibits human platelet aggregation and human 5-lipoxygenase. Biosci Biotechnol Biochem 2006, 70 (10), 2494-500.

93. Prabhakar Reddy, P.; Tiwari, A. K.; Ranga Rao, R.; Madhusudhana, K.; Rama Subba Rao, V.; Ali, A. Z.; Suresh Babu, K.; Madhusudana Rao, J., New Labdane diterpenes as intestinal alpha-glucosidase inhibitor from antihyperglycemic extract of Hedychium spicatum (Ham. Ex Smith) rhizomes. Bioorg. Med. Chem. Lett. 2009, 19 (9), 2562-5.

94. Nguyen, L. T. T.; Vo, H. K. T.; Dang, S. V.; Le, T. H.; Ha, L. D.; Nguyen, L.-T. T.; Nguyen, L.-H. D., Labdane and norlabdane diterpenoids from the aerial parts of Leonurus japonicus. Phytochemistry Letters 2017, 22, 174-178.

95. Shimizu, K.; Kondo, R.; Sakai, K., Inhibition of tyrosinase by flavonoids, stilbenes and related 4-substituted resorcinols: structure-activity investigations. Planta Med 2000, 66 (1), 11-5.

96. Ghosh, S.; Indukuri, K.; Bondalapati, S.; Saikia, A. K.; Rangan, L., Unveiling the mode of action of antibacterial labdane diterpenes from Alpinia nigra (Gaertn.) B. L. Burtt seeds. Eur J Med Chem 2013, 66, 101-5.

97. Gonzalez, M. A.; Mancebo-Aracil, J.; Tangarife-Castano, V.; Agudelo-Gomez, L.; Zapata, B.; Mesa-Arango, A.; Betancur-Galvis, L., Synthesis and biological evaluation of (+)-labdadienedial, derivatives and precursors from (+)-sclareolide. Eur J Med Chem 2010, 45 (9), 4403-8.

98. Jalaja, R.; Leela, S. G.; Valmiki, P. K.; Salfeena, C. T. F.; Ashitha, K. T.; Krishna Rao, V. R. D.; Nair, M. S.; Gopalan, R. K.; Somappa, S. B., Discovery of Natural Product Derived Labdane Appended Triazoles as Potent Pancreatic Lipase Inhibitors. ACS Med Chem Lett 2018, 9 (7), 662-666.

99. Sridhar, S. N. C.; Palawat, S.; Paul, A. T., Design, synthesis, biological evaluation and molecular modelling studies of indole glyoxylamides as a new class of potential pancreatic lipase inhibitors. Bioorg. Chem. 2019, 85, 373-381.

100. Liu, P. K.; Weng, Z. M.; Ge, G. B.; Li, H. L.; Ding, L. L.; Dai, Z. R.; Hou, X. D.; Leng, Y. H.; Yu, Y.; Hou, J., Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism. Int J Biol Macromol 2018, 118 (Pt B), 2216-2223.

101. Malek, S. N.; Lee, G. S.; Hong, S. L.; Yaacob, H.; Wahab, N. A.; Faizal Weber, J. F.; Shah, S. A., Phytochemical and cytotoxic investigations of Curcuma mangga rhizomes. Molecules 2011, 16 (6), 4539-48.

102. Liu, Y.; Nair, M. G., Labdane diterpenes in Curcuma mangga rhizomes inhibit lipid peroxidation, cyclooxygenase enzymes and human tumour cell proliferation. Food Chem. 2011, 124 (2), 527-532.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る