リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Precipitation Rates of Electrons Interacting With Lower-Band Chorus Emissions in the Inner Magnetosphere」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Precipitation Rates of Electrons Interacting With Lower-Band Chorus Emissions in the Inner Magnetosphere

Hsieh, Yi-Kai Omura, Yoshiharu 京都大学 DOI:10.1029/2023JA031307

2023.06

概要

Electrons trapped in the Earth's magnetic field can be scattered by whistler mode chorus emissions and precipitate into the Earth's upper atmosphere. Whistler mode chorus waves propagating in the Earth's inner magnetic field are usually observed with oblique wave normal angles (WNAs). In this study, we apply 12 chorus wave models with four various WNA sets (the maximum WNA are 0°, 20°, 60°, and 90% of resonance cone angles) and three wave amplitude sets (the maximum wave magnetic fields are 2.1 nT, 307 pT, and 49.4 pT) at L = 4.5. We use test-particle simulations to trace electrons interacting with the waves and create Green's function sets for electrons initially at kinetic energies (K) 10–6, 000 keV and equatorial pitch angles (α) 5°–89°. The simulation results show that in the 2.1 nT cases, the very oblique chorus waves contribute to more electron precipitation than the other three chorus wave models, especially at energies 50–100 keV. Checking the highest initial equatorial pitch angle of the precipitated electrons, we find that the very oblique chorus waves can precipitate electrons with α > 45°. In contrast, the other chorus waves can only precipitate electrons with α < 30°. Furthermore, the precipitation rates reveal that the anomalous trapping effect, which moves low equatorial pitch angle electrons away from the loss cone, in the oblique cases is much weaker than in the parallel case, resulting in higher precipitation rates. Finally, we derive the pitch angle scattering rates and verify the precipitation by nth cyclotron resonances with oblique chorus.

この論文で使われている画像

参考文献

Agapitov, O., Mourenas, D., Artemyev, A., Mozer, F., Bonnell, J., Angelopoulos, V., et al. (2018). Spatial extent and temporal correlation of

chorus and hiss: Statistical results from multipoint themis observations. Journal of Geophysical Research: Space Physics, 123(10), 8317–

8330. https://doi.org/10.1029/2018JA025725

Artemyev, A., Zhang, X.-J., Zou, Y., Mourenas, D., Angelopoulos, V., Vainchtein, D., et al. (2022). On the nature of intense sub-relativistic electron precipitation. Journal of Geophysical Research: Space Physics, 127(6), e2022JA030571. https://doi.org/10.1029/2022JA030571

Bashir, M. F., Artemyev, A., Zhang, X.-J., & Angelopoulos, V. (2022). Energetic electron precipitation driven by the combined effect of ULF,

EMIC, and whistler waves. Journal of Geophysical Research: Space Physics, 127(1), e2021JA029871. https://doi.org/10.1029/2021JA029871

Bortnik, J., Thorne, R., & Inan, U. S. (2008). Nonlinear interaction of energetic electrons with large amplitude chorus. Geophysical Research

Letters, 35(21), L21102. https://doi.org/10.1029/2008GL035500

Breneman, A., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., et al. (2017). Observations directly linking relativistic electron

microbursts to whistler mode chorus: Van Allen Probes and FIREBIRD II. Geophysical Research Letters, 44(22), 11–265. https://doi.

org/10.1002/2017GL075001

Breneman, A. W., Kletzing, C. A., Pickett, J., Chum, J., & Santolik, O. (2009). Statistics of multispacecraft observations of chorus dispersion and

source location. Journal of Geophysical Research, 114(A6), A05215. https://doi.org/10.1029/2008JA013549

Chen, L., Zhang, X.-J., Artemyev, A., Zheng, L., Xia, Z., Breneman, A. W., & Horne, R. B. (2021). Electron microbursts induced by nonducted

chorus waves. Frontiers in Astronomy and Space Sciences, 8, 745927. https://doi.org/10.3389/fspas.2021.745927

Foster, J., Erickson, P., Omura, Y., Baker, D., Kletzing, C., & Claudepierre, S. (2017). Van Allen Probes observations of prompt MeV radiation

belt electron acceleration in nonlinear interactions with VLF chorus. Journal of Geophysical Research: Space Physics, 122(1), 324–339.

https://doi.org/10.1002/2016JA023429

Grach, S. V., & Demekhov, A. G. (2020). Precipitation of relativistic electrons under resonant interaction with electromagnetic ion cyclotron wave

packets. Journal of Geophysical Research: Space Physics, 125(2), e2019JA027358. https://doi.org/10.1029/2019JA027358

Hikishima, M., Omura, Y., & Summers, D. (2010). Microburst precipitation of energetic electrons associated with chorus wave generation.

Geophysical Research Letters, 37(7), L07103. https://doi.org/10.1029/2010GL042678

Hsieh, Y.-K. (2022). Data set of precipitation rates of electrons interacting with lower-band chorus emissions in the inner magnetosphere [dataset]. Zenodo. https://doi.org/10.5281/zenodo.7475801

Hsieh, Y.-K., Kubota, Y., & Omura, Y. (2020). Nonlinear evolution of radiation belt electron fluxes interacting with oblique whistler mode chorus

emissions. Journal of Geophysical Research: Space Physics, 125(2), e2019JA027465. https://doi.org/10.1029/2019JA027465

Hsieh, Y.-K., & Omura, Y. (2017). Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere. Journal

of Geophysical Research: Space Physics, 122(1), 675–694. https://doi.org/10.1002/2016JA023255

Hsieh, Y.-K., Omura, Y., & Kubota, Y. (2022). Energetic electron precipitation induced by oblique whistler mode chorus emissions. Journal of

Geophysical Research: Space Physics, 127(1), e2021JA029583. https://doi.org/10.1029/2021JA029583

Kasahara, S., Miyoshi, Y., Yokota, S., Mitani, T., Kasahara, Y., Matsuda, S., et al. (2018). Pulsating aurora from electron scattering by chorus

waves. Nature, 554(7692), 337–340. https://doi.org/10.1038/nature25505

Kitahara, M., & Katoh, Y. (2019). Anomalous trapping of low pitch angle electrons by coherent whistler mode waves. Journal of Geophysical

Research: Space Physics, 124(7), 5568–5583. https://doi.org/10.1029/2019JA026493

Kubota, Y., & Omura, Y. (2017). Rapid precipitation of radiation belt electrons induced by emic rising tone emissions localized in longitude inside

and outside the plasmapause. Journal of Geophysical Research: Space Physics, 122(1), 293–309. https://doi.org/10.1002/2016JA023267

Kubota, Y., & Omura, Y. (2018). Nonlinear dynamics of radiation belt electrons interacting with chorus emissions localized in longitude. Journal

of Geophysical Research: Space Physics, 123(6), 4835–4857. https://doi.org/10.1029/2017JA025050

Kurita, S., Miyoshi, Y., Blake, J. B., Reeves, G. D., & Kletzing, C. A. (2016). Relativistic electron microbursts and variations in trapped mev

electron fluxes during the 8–9 October 2012 storm: SAMPEX and Van Allen Probes observations. Geophysical Research Letters, 43(7),

3017–3025. https://doi.org/10.1002/2016GL068260

Li, W., Bortnik, J., Thorne, R., & Angelopoulos, V. (2011). Global distribution of wave amplitudes and wave normal angles of chorus waves using

THEMIS wave observations. Journal of Geophysical Research, 116(A12), A12205. https://doi.org/10.1029/2011JA017035

Lorentzen, K., Blake, J., Inan, U., & Bortnik, J. (2001). Observations of relativistic electron microbursts in association with VLF chorus. Journal

of Geophysical Research, 106(A4), 6017–6027. https://doi.org/10.1029/2000JA003018

Lyons, L. R., Thorne, R. M., & Kennel, C. F. (1972). Pitch-angle diffusion of radiation belt electrons within the plasmasphere. Journal of

Geophysical Research, 77(19), 3455–3474. https://doi.org/10.1029/JA077i019p03455

Ma, Q., Artemyev, A., Mourenas, D., Li, W., Thorne, R., Kletzing, C., et al. (2017). Very oblique whistler mode propagation in the radiation belts:

Effects of hot plasma and landau damping. Geophysical Research Letters, 44(24), 12–057. https://doi.org/10.1002/2017GL075892

Miyoshi, Y., Hosokawa, K., Kurita, S., Oyama, S.-I., Ogawa, Y., Saito, S., et al. (2021). Penetration of MeV electrons into the mesosphere accompanying pulsating aurorae. Scientific Reports, 11(1), 1–9. https://doi.org/10.1038/s41598-021-92611-3

20 of 21

21699402, 2023, 6, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JA031307 by Cochrane Japan, Wiley Online Library on [29/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

10.1029/2023JA031307

Mourenas, D., Artemyev, A., Agapitov, O., Krasnoselskikh, V., & Li, W. (2014). Approximate analytical solutions for the trapped electron distribution due to quasi-linear diffusion by whistler mode waves. Journal of Geophysical Research: Space Physics, 119(12), 9962–9977. https://

doi.org/10.1002/2014JA020443

Mourenas, D., Artemyev, A., Agapitov, O., Krasnoselskikh, V., & Mozer, F. (2015). Very oblique whistler generation by low-energy electron

streams. Journal of Geophysical Research: Space Physics, 120(5), 3665–3683. https://doi.org/10.1002/2015JA021135

Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Lyons, L. R., Angelopoulos, V., et al. (2010). Identifying the driver of pulsating aurora. Science,

330(6000), 81–84. https://doi.org/10.1126/science.1193186

Nunn, D. (1974). A self-consistent theory of triggered VLF emissions. Planetary and Space Science, 22(3), 349–378. https://doi.

org/10.1016/0032-0633(74)90070-1

Nunn, D., & Omura, Y. (2015). A computational and theoretical investigation of nonlinear wave-particle interactions in oblique whistlers. Journal

of Geophysical Research: Space Physics, 120(4), 2890–2911. https://doi.org/10.1002/2014JA020898

Omura, Y. (2021). Nonlinear wave growth theory of whistler-mode chorus and hiss emissions in the magnetosphere. Earth Planets and Space,

73(1), 1–28. https://doi.org/10.1186/s40623-021-01380-w

Omura, Y., Furuya, N., & Summers, D. (2007). Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole

magnetic field. Journal of Geophysical Research, 112(A6), 12. https://doi.org/10.1029/2006JA012243

Omura, Y., Hikishima, M., Katoh, Y., Summers, D., & Yagitani, S. (2009). Nonlinear mechanisms of lower-band and upper-band VLF chorus

emissions in the magnetosphere. Journal of Geophysical Research, 114(A7), A07217. https://doi.org/10.1029/2009JA014206

Omura, Y., Hsieh, Y.-K., Foster, J. C., Erickson, P. J., Kletzing, C. A., & Baker, D. N. (2019). Cyclotron acceleration of relativistic electrons

through landau resonance with obliquely propagating whistler-mode chorus emissions. Journal of Geophysical Research: Space Physics,

124(4), 2795–2810. https://doi.org/10.1029/2018JA026374

Omura, Y., Miyashita, Y., Yoshikawa, M., Summers, D., Hikishima, M., Ebihara, Y., & Kubota, Y. (2015). Formation process of relativistic

electron flux through interaction with chorus emissions in the Earth’s inner magnetosphere. Journal of Geophysical Research: Space Physics,

120(11), 9545–9562. https://doi.org/10.1002/2015JA021563

Ozaki, M., Miyoshi, Y., Shiokawa, K., Hosokawa, K., Oyama, S.-I., Kataoka, R., et al. (2019). Visualization of rapid electron precipitation via

chorus element wave–particle interactions. Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-018-07996-z

Rae, I. J., Murphy, K. R., Watt, C. E., Halford, A. J., Mann, I. R., Ozeke, L. G., et al. (2018). The role of localized compressional ultralow frequency waves in energetic electron precipitation. Journal of Geophysical Research: Space Physics, 123(3), 1900–1914. https://doi.

org/10.1002/2017JA024674

Saito, S., Miyoshi, Y., & Seki, K. (2012). Relativistic electron microbursts associated with whistler chorus rising tone elements: GEMSIS-RBW

simulations. Journal of Geophysical Research, 117(A10), 10206. https://doi.org/10.1029/2012JA018020

Santolík, O., Kletzing, C., Kurth, W., Hospodarsky, G., & Bounds, S. (2014). Fine structure of large-amplitude chorus wave packets. Geophysical

Research Letters, 41(2), 293–299. https://doi.org/10.1002/2013GL058889

Sazhin, S., & Hayakawa, M. (1992). Magnetospheric chorus emissions: A review. Planetary and Space Science, 40(5), 681–697. https://doi.

org/10.1016/0032-0633(92)90009-D

Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008). Review of modeling of losses and sources of relativistic electrons in

the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70(14), 1694–1713. https://doi.

org/10.1016/j.jastp.2008.06.014

Shue, J.-H., Nariyuki, Y., Katoh, Y., Saito, S., Kasahara, Y., Hsieh, Y.-K., et al. (2019). A systematic study in characteristics of lower band

rising-tone chorus elements. Journal of Geophysical Research: Space Physics, 124(11), 9003–9016. https://doi.org/10.1029/2019JA027368

Summers, D., & Omura, Y. (2007). Ultra-relativistic acceleration of electrons in planetary magnetospheres. Geophysical Research Letters,

34(24), L24205. https://doi.org/10.1029/2007GL032226

Thorne, R. M., O’Brien, T., Shprits, Y., Summers, D., & Horne, R. B. (2005). Timescale for MeV electron microburst loss during geomagnetic

storms. Journal of Geophysical Research, 110(A9), 9202. https://doi.org/10.1029/2004JA010882

Tsai, E., Artemyev, A., Zhang, X.-J., & Angelopoulos, V. (2022). Relativistic electron precipitation driven by nonlinear resonance with

whistler-mode waves. Journal of Geophysical Research: Space Physics, 127(5), e2022JA030338. https://doi.org/10.1029/2022JA030338

Zhang, X.-J., Artemyev, A., Angelopoulos, V., Tsai, E., Wilkins, C., Kasahara, S., et al. (2022). Superfast precipitation of energetic electrons in

the radiation belts of the Earth. Nature Communications, 13(1), 1–8. https://doi.org/10.1038/s41467-022-29291-8

Zhang, X.-J., Mourenas, D., Artemyev, A., Angelopoulos, V., & Sauvaud, J.-A. (2019). Precipitation of MeV and sub-MeV electrons

due to combined effects of EMIC and ULF waves. Journal of Geophysical Research: Space Physics, 124(10), 7923–7935. https://doi.

org/10.1029/2019JA026566

HSIEH AND OMURA

21 of 21

21699402, 2023, 6, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JA031307 by Cochrane Japan, Wiley Online Library on [29/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る