リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Upstream Shift of Generation Region of Whistler-Mode Rising-Tone Emissions in the Magnetosphere」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Upstream Shift of Generation Region of Whistler-Mode Rising-Tone Emissions in the Magnetosphere

Nogi, Takeshi Omura, Yoshiharu 京都大学 DOI:10.1029/2022JA031024

2023.03

概要

We have performed a series of simulation runs for whistler-mode wave-particle interaction in a parabolic magnetic field with 12 different frequencies of triggering waves and 3 different plasma frequencies specifying cold plasma densities. Under a given plasma condition, a specific frequency range of the triggering wave exists that can generate rising-tone emissions. The generation region of rising-tone emission shifts upstream. The velocity of the wave generation region is dependent on duration of the subpacket, which is controlled by the formation of the resonant current in the generation region. When the source velocity, which is a sum of the resonance and group velocities, is approximately the same as the velocity of the wave generation region, a long-sustaining rising-tone emission is generated. When the spatial and temporal gap between subpackets exists due to damping phase of short subpacket generation, resonant electrons in the gap of the subpackets are carried at the resonance velocity to the upstream region, and the velocity of the wave generation region becomes large in magnitude. When formation of resonant currents is delayed, the velocity of the generation region becomes smaller than the source velocity in magnitude. Below one quarter of the cyclotron frequency, coalescence of subpackets takes place, suppressing formation of the resonant current in the generation region. Since gradual upstream shift of the generation region is necessary for the wave to grow locally, the source velocity should be a small negative value.

この論文で使われている画像

参考文献

Chen, H., Gao, X., Lu, Q., Fan, K., Ke, Y., Wang, X., & Wang, S. (2022). Gap formation around 0.5Ωe in the whistler-mode waves due to

the plateau-like shape in the parallel electron distribution: 2D pic simulations. Journal of Geophysical Research: Space Physics, 127(5),

e2021JA030119. https://doi.org/10.1029/2021JA030119

Chen, H., Gao, X., Lu, Q., Sauer, K., Chen, R., Yao, J., & Wang, S. (2021). Gap formation around 0.5Ωe of whistler-mode waves excited by electron

temperature anisotropy. Journal of Geophysical Research: Space Physics, 126(2), e2020JA028631. https://doi.org/10.1029/2020JA028631

Foster, J. C., Erickson, P. J., & Omura, Y. (2021). Subpacket structure in strong VLF chorus rising tones: Characteristics and consequences for

relativistic electron acceleration. Earth Planets and Space, 73(1), 140. https://doi.org/10.1186/s40623-021-01467-4

Foster, J. C., Erickson, P. J., Omura, Y., Baker, D. N., Kletzing, C. A., & Claudepierre, S. G. (2017). Van allen probes observations of prompt

MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus. Journal of Geophysical Research: Space Physics, 122(1),

324–339. https://doi.org/10.1002/2016JA023429

Fujiwara, Y., Nogi, T., & Omura, Y. (2022). Nonlinear triggering process of whistler-mode emissions in a homogeneous magnetic field. Earth

Planets and Space, 74(1), 95. https://doi.org/10.1186/s40623-022-01646-x

Gołkowski, M., Harid, V., & Hosseini, P. (2019). Review of controlled excitation of non-linear wave-particle interactions in the magnetosphere.

Frontiers in Astronomy and Space Sciences, 6, 2. https://doi.org/10.3389/fspas.2019.00002

Hanzelka, M., Santolík, O., Omura, Y., Kolmašová, I., & Kletzing, C. A. (2020). A model of the subpacket structure of rising tone chorus emissions. Journal of Geophysical Research: Space Physics, 125(8), e2020JA028094. https://doi.org/10.1029/2020JA028094

Harid, V., Gołkowski, M., Hosseini, P., & Kim, H. (2022). Backward-propagating source as a component of rising tone whistler-mode chorus

generation. Frontiers in Astronomy and Space Sciences, 9, 232. https://doi.org/10.3389/FSPAS.2022.981949

Helliwell, R. A. (1967). A theory of discrete VLF emissions from the magnetosphere. Journal of Geophysical Research, 72(19), 4773–4790.

https://doi.org/10.1029/JZ072i019p04773

Helliwell, R. A., & Katsufrakis, J. P. (1974). VLF wave injection into the magnetosphere from siple station, Antarctica. Journal of Geophysical

Research, 79(16), 2511–2518. https://doi.org/10.1029/JA079i016p02511

Hikishima, M., & Omura, Y. (2012). Particle simulations of whistler-mode rising-tone emissions triggered by waves with different amplitudes.

Journal of Geophysical Research: Space Physics, 117(A4), A04226. https://doi.org/10.1029/2011JA017428

Hikishima, M., Omura, Y., & Summers, D. (2010). Self-consistent particle simulation of whistler mode triggered emissions. Journal of Geophysical Research: Space Physics, 115(A12), A12246. https://doi.org/10.1029/2010JA015860

Hikishima, M., Yagitani, S., Omura, Y., & Nagano, I. (2009). Full particle simulation of whistler-mode rising chorus emissions in the magnetosphere. Journal of Geophysical Research: Space Physics, 114(A1), A01203. https://doi.org/10.1029/2008JA013625

Hsieh, Y.-K., & Omura, Y. (2018). Nonlinear damping of oblique whistler mode waves via Landau resonance. Journal of Geophysical Research:

Space Physics, 123(9), 7462–7472. https://doi.org/10.1029/2018JA025848

Juhász, L., Omura, Y., Lichtenberger, J., & Friedel, R. H. (2019). Evaluation of plasma properties from chorus waves observed at the generation

region. Journal of Geophysical Research: Space Physics, 124(6), 4125–4136. https://doi.org/10.1029/2018JA026337

Katoh, Y., & Omura, Y. (2006). A study of generation mechanism of VLF triggered emission by self-consistent particle code. Journal of Geophysical Research: Space Physics, 111(A12), A12207. https://doi.org/10.1029/2006JA011704

Ke, Y., Gao, X., Lu, Q., Wang, X., & Wang, S. (2017). Generation of rising-tone chorus in a two-dimensional mirror field by using the general

curvilinear pic code. Journal of Geophysical Research: Space Physics, 122(8), 8154–8165. https://doi.org/10.1002/2017JA024178

Kubota, Y., Omura, Y., Kletzing, C., & Reeves, G. (2018). Generation process of large-amplitude upper-band chorus emissions observed by Van

Allen probes. Journal of Geophysical Research: Space Physics, 123(5), 3704–3713. https://doi.org/10.1029/2017JA024782

Li, J., Bortnik, J., An, X., Li, W., Angelopoulos, V., Thorne, R. M., et al. (2019). Origin of two-band chorus in the radiation belt of Earth. Nature

Communications, 10(1), 4672. https://doi.org/10.1038/s41467-019-12561-3

Li, J., Bortnik, J., Li, W., An, X., Lyons, L. R., Kurth, W. S., et al. (2022). Unraveling the formation region and frequency of chorus spectral gaps.

Geophysical Research Letters, 49(19), e2022GL100385. https://doi.org/10.1029/2022GL100385

Liu, S., Gao, Z., Xiao, F., He, Q., Li, T., Shang, X., et al. (2021). Observation of unusual chorus elements by Van Allen probes. Journal of

Geophysical Research: Space Physics, 126(7), e2021JA029258. https://doi.org/10.1029/2021JA029258

McCollough, J. P., Miyoshi, Y., Ginet, G. P., Johnston, W. R., Su, Y.-J., Starks, M. J., et al. (2022). Space-to-space very low frequency radio

transmission in the magnetosphere using the DSX and Arase satellites. Earth Planets and Space, 74(1), 64. https://doi.org/10.1186/

s40623-022-01605-6

Nogi, T., Nakamura, S., & Omura, Y. (2020). Full particle simulation of whistler-mode triggered falling-tone emissions in the magnetosphere.

Journal of Geophysical Research: Space Physics, 125(10), e2020JA027953. https://doi.org/10.1029/2020JA027953

Nogi, T., & Omura, Y. (2022). Nonlinear signatures of VLF-triggered emissions: A simulation study. Journal of Geophysical Research: Space

Physics, 127(1), e2021JA029826. https://doi.org/10.1029/2021JA029826

21 of 22

21699402, 2023, 3, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA031024 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

10.1029/2022JA031024

Nunn, D., & Omura, Y. (2012). A computational and theoretical analysis of falling frequency VLF emissions. Journal of Geophysical Research:

Space Physics, 117(A8), A08228. https://doi.org/10.1029/2012JA017557

Nunn, D., Zhang, X.-J., Mourenas, D., & Artemyev, A. V. (2021). Generation of realistic short chorus wave packets. Geophysical Research

Letters, 48(7), e2020GL092178. https://doi.org/10.1029/2020GL092178

Omura, Y. (2007). One-dimensional electromagnetic particle code KEMPO1: A tutorial on microphysics in space plasmas. In H. Usui, & Y.

Omura (Eds.), Advanced methods for space simulations (pp. 1–21). Terra Scientific Publishing Company.

Omura, Y. (2021). Nonlinear wave growth theory of whistler-mode chorus and hiss emissions in the magnetosphere. Earth Planets and Space,

73(1), 95. https://doi.org/10.1186/s40623-021-01380-w

Omura, Y., Hikishima, M., Katoh, Y., Summers, D., & Yagitani, S. (2009). Nonlinear mechanisms of lower-band and upper-band VLF chorus

emissions in the magnetosphere. Journal of Geophysical Research: Space Physics, 114(A7), A07217. https://doi.org/10.1029/2009JA014206

Omura, Y., Katoh, Y., & Summers, D. (2008). Theory and simulation of the generation of whistler-mode chorus. Journal of Geophysical

Research: Space Physics, 113(A4), A04223. https://doi.org/10.1029/2007JA012622

Omura, Y., & Matsumoto, H. (1993). KEMPO1: Technical guide to one-dimensional electromagnetic particle code. In H. Matsumoto, & Y.

Omura (Eds.), Computer space plasma physics: Simulation techniques and softwares (pp. 21–65). Terra Scientific Publishing Company.

Omura, Y., & Nunn, D. (2011). Triggering process of whistler mode chorus emissions in the magnetosphere. Journal of Geophysical Research:

Space Physics, 116(A5), A05205. https://doi.org/10.1029/2010JA016280

Omura, Y., Nunn, D., Matsumoto, H., & Rycroft, M. (1991). A review of observational, theoretical and numerical studies of VLF triggered emissions. Journal of Atmospheric and Terrestrial Physics, 53(5), 351–368. https://doi.org/10.1016/0021-9169(91)90031-2

Ratcliffe, H., & Watt, C. E. J. (2017). Self-consistent formation of a 0.5 cyclotron frequency gap in magnetospheric whistler mode waves. Journal

of Geophysical Research: Space Physics, 122(8), 8166–8180. https://doi.org/10.1002/2017JA024399

Reid, R. A., Marshall, R. A., Starks, M. J., Usanova, M. E., Wilson, G. R., Johnston, W. R., et al. (2022). Active VLF transmission experiments between the DSX and VPM spacecraft. Journal of Geophysical Research: Space Physics, 127(4), e2021JA030087. https://doi.

org/10.1029/2021JA030087

Roux, A., & Pellat, R. (1978). A theory of triggered emissions. Journal of Geophysical Research: Space Physics, 83(A4), 1433–1441. https://

doi.org/10.1029/JA083iA04p01433

Santolík, O., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., & Bounds, S. R. (2014). Fine structure of large-amplitude chorus wave packets.

Geophysical Research Letters, 41(2), 293–299. https://doi.org/10.1002/2013GL058889

Sauer, K., Baumgärtel, K., & Sydora, R. (2020). Gap formation around Ωe/2 and generation of low-band whistler waves by landau-resonant

electrons in the magnetosphere: Predictions from dispersion theory. Earth and Planetary Physics, 4(2), 138–150. https://doi.org/10.26464/

epp2020020

Shoji, M., & Omura, Y. (2013). Triggering process of electromagnetic ion cyclotron rising tone emissions in the inner magnetosphere. Journal of

Geophysical Research: Space Physics, 118(9), 5553–5561. https://doi.org/10.1002/jgra.50523

Tao, X., Zonca, F., & Chen, L. (2021). A “Trap-Release-Amplify”model of chorus waves. Journal of Geophysical Research: Space Physics,

126(9), e2021JA029585. https://doi.org/10.1029/2021JA029585

Umeda, T., Omura, Y., & Matsumoto, H. (2001). An improved masking method for absorbing boundaries in electromagnetic particle simulations.

Computer Physics Communications, 137(2), 286–299. https://doi.org/10.1016/S0010-4655(01)00182-5

Zhang, X.-J., Demekhov, A. G., Katoh, Y., Nunn, D., Tao, X., Mourenas, D., et al. (2021). Fine structure of chorus wave packets: Comparison between observations and wave generation models. Journal of Geophysical Research: Space Physics, 126(8), e2021JA029330.

https://doi.org/10.1029/2021JA029330

NOGI AND OMURA

22 of 22

21699402, 2023, 3, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA031024 by Cochrane Japan, Wiley Online Library on [08/05/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Space Physics

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る