リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Hydroxybenzoic Acid Production Using Metabolically Engineered Corynebacterium glutamicum」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Hydroxybenzoic Acid Production Using Metabolically Engineered Corynebacterium glutamicum

Doke, Misa Kishida, Mayumi Hirata, Yuuki Nakano, Mariko Horita, Mayo Nonaka, Daisuke Mori, Yutaro Fujiwara, Ryosuke Kondo, Akihiko Noda, Shuhei Tanaka, Tsutomu 神戸大学

2023.07.19

概要

Hydroxybenzoic acids (HBAs), including 4-HBA, 3-HBA, and 2-HBA, are valuable platform chemicals for production of commodity materials and fine chemicals. Herein, we employed metabolic engineering techniques to enhance the production of these HBAs in Corynebacterium glutamicum ATCC 13032. Our approach augmented the shikimate pathway and eliminated genes associated with HBA degradation, particularly phenol 2-monooxygenase encoded by cg2966. Increased titers of 3-HBA and 4-HBA were achieved via selection of suitable promoters for 3-hydroxybenzoate synthase and chorismate pyruvate lyase. A tac-M1 promoter was suitable for chorismate pyruvate lyase expression and 8.3 g/L of 4-HBA production was achieved. Efficient production of 2-HBA was enabled by maintaining a balanced expression of isochorismate synthase and isochorismate pyruvate lyase. Consequently, strains KSD5-tacM1-H and KSD5-J2-PE exhibited production levels of 19.2 g/L of 3-HBA and 12.9 g/L of 2-HBA, respectively, using 1 L jar fermenter containing 80 g/L of glucose. Therefore, this engineered strain platform holds significant potential for production of other valuable products derived from chorismate.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Kim JY, Ahn YJ, Lee JA, Lee SY. Recent advances in the production of platform chemicals using metabolically engineered microorganisms.

Curr. Opin. Green Sustain. Chem. 2023, 40, 100777.

Madhavan A, Arun KB, Sindhu R, Nair BG, Pandey A, Awasthi MK, et al. Design and genome engineering of microbial cell factories for

efficient conversion of lignocellulose to fuel. Bioresour. Technol. 2023, 370, 128555.

Geng B, Jia X, Peng X, Han Y. Biosynthesis of value-added bioproducts from hemicellulose of biomass through microbial metabolic

engineering. Metab. Eng. Commun. 2022, 15, e00211.

Gómez-Sanabria A, Kiesewetter G, Klimont Z, Schoepp W, Haberl H. Potential for future reductions of global GHG and air pollutants from

circular waste management systems. Nat. Commun. 2022, 13, 106.

Olabi A, Abdelkareem MA. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111.

Ding Q, Ye C. Microbial cell factories based on filamentous bacteria, yeasts, and fungi. Microb. Cell Fact. 2023, 22, 20.

Liang P, Cao M, Li J, Wang Q, Dai Z. Expanding sugar alcohol industry: Microbial production of sugar alcohols and associated

chemocatalytic derivatives. Biotechnol. Adv. 2023, 64, 108105.

Zhou S, Ding N, Han R, Deng Y. Metabolic engineering and fermentation optimization strategies for producing organic acids of the

tricarboxylic acid cycle by microbial cell factories. Bioresour. Technol. 2023, 379, 128986.

Xu S, Gao S, An Y. Research progress of engineering microbial cell factories for pigment production. Biotechnol. Adv. 2023, 65, 108150.

Jiang H, Wang X. Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances. Biotechnol. Adv. 2023, 65, 108151.

Zha J, Zhao Z, Xiao Z, Eng T, Mukhopadhyay A, Koffas MA, et al. Biosystem design of Corynebacterium glutamicum for bioproduction.

Curr. Opin. Biotechnol. 2023, 79, 102870.

Synthetic Biology and Engineering 2023, 1, 10010

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

9 of 9

Wang S, Bilal M, Hu H, Wang W, Zhang X. 4-Hydroxybenzoic acid - a versatile platform intermediate for value-added compounds. Appl.

Microbiol. Biotechnol. 2018, 102, 3561–3571.

Wang Y, Meng X, Tian Y, Kim KH, Jia L, Pu Y, et al. Engineered sorghum bagasse enables a sustainable biorefinery with p-hydroxybenzoic

acid-based deep eutectic solvent. ChemSusChem 2021, 14, 5235–5244.

Kuatsjah E, Johnson CW, Salvachúa D, Werner AZ, Zahn M, Szostkiewicz CJ, et al. Debottlenecking 4-hydroxybenzoate hydroxylation in

Pseudomonas putida KT2440 improves muconate productivity from p-coumarate. Metab. Eng. 2022, 70, 31–42.

Khadem S, Marles RJ. Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies.

Molecules 2010, 15, 7985–8005.

Sroka Z, Cisowski W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol.

2003, 41, 753–758.

Khan SA, Shyam C, Vikas K. Potential anti-stress, anxiolytic and antidepressant like activities of mono-hydroxybenzoic acids and aspirin

in rodents: a comparative study. Austin J. Pharmacol. Ther. 2015, 3, 1073.

Juurlink BH, Azouz HJ, Aldalati AM, AlTinawi BM, Ganguly P. Hydroxybenzoic acid isomers and the cardiovascular system. Nutr. J.

2014, 13, 63.

Chung H, Yang JE, Ha JY, Chae TU, Shin JH, Gustavsson M, et al. Bio-based production of monomers and polymers by metabolically

engineered microorganisms. Curr. Opin. Biotechnol. 2015, 36, 73–84.

Noda S, Kondo A. Recent advances in microbial production of aromatic chemicals and derivatives. Trends Biotechnol. 2017, 35, 785–796.

Noda S, Shirai T, Oyama S, Kondo A. Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives.

Metab Eng. 2016, 33, 119–129.

Kubota T, Watanabe A, Suda M, Kogure T, Hiraga K, Inui M. Production of para-aminobenzoate by genetically engineered

Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct. Metab. Eng. 2016, 38, 322–330.

Averesch NJH, Prima A, Krömer JO. Enhanced production of para-hydroxybenzoic acid by genetically engineered Saccharomyces

cerevisiae. Bioprocess Biosyst. Eng. 2017, 40, 1283–1289.

Lee JH, Wendisch VF. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass.

J. Biotechnol. 2017, 257, 211–221.

Kitade Y, Hashimoto R, Suda M, Hiraga K, Inui M. Production of 4-hydroxybenzoic acid by an aerobic growth-arrested bioprocess using

metabolically engineered Corynebacterium glutamicum. Appl. Environ. Microbiol. 2018, 84, e02587-17.

Kallscheuer N, Marienhagen J. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids. Microb. Cell Fact.

2018, 17, 70.

Meijnen JP, Verhoef S, Briedjlal AA, de Winde JH, Ruijssenaars HJ. Improved p-hydroxybenzoate production by engineered Pseudomonas

putida S12 by using a mixed-substrate feeding strategy. Appl. Microbiol. Biotechnol. 2011, 90, 885–893.

Xiao S, Wang Z, Wang B, Hou B, Cheng J, Bai T, et al. Expanding the application of tryptophan: Industrial biomanufacturing of tryptophan

derivatives. Front. Microbiol. 2023, 14, 1099098.

Kou M, Cui Z, Fu J, Dai W, Wang Z, Chen T. Metabolic engineering of Corynebacterium glutamicum for efficient production of optically

pure (2R,3R)-2,3-butanediol. Microb. Cell Fact. 2022, 21, 150.

Zhao X, Wu Y, Feng T, Shen J, Lu H, Zhang Y, et al. Dynamic upregulation of the rate-limiting enzyme for valerolactam biosynthesis in

Corynebacterium glutamicum. Metab. Eng. 2023, 77, 89–99.

Weiland F, Barton N, Kohlstedt M, Becker J, Wittmann C. Systems metabolic engineering upgrades Corynebacterium glutamicum to highefficiency cis, cis-muconic acid production from lignin-based aromatics. Metab. Eng. 2023, 75, 153–169.

Sato N, Kishida M, Nakano M, Hirata Y, Tanaka T. Metabolic Engineering of Shikimic acid-producing Corynebacterium glutamicum from

glucose and cellobiose retaining its phosphotransferase system function and pyruvate kinase activities. Front. Bioeng. Biotechnol. 2020, 8,

569406.

Matsuura R, Kishida M, Konishi R, Hirata Y, Adachi N, Segawa S, et al. Metabolic engineering to improve 1,5-diaminopentane production

from cellobiose using β-glucosidase-secreting Corynebacterium glutamicum. Biotechnol. Bioeng. 2019, 116, 2640–2651.

Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M. A novel gnd mutation leading to increased L-lysine production in Corynebacterium

glutamicum. FEMS Microbiol. Lett. 2005, 242, 265–274.

Yim SS, An SJ, Kang M, Lee J, Jeong KJ. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium

glutamicum. Biotechnol. Bioeng. 2013, 110, 2959–2969.

Yim SS, Choi JW, Lee SH, Jeong KJ. Modular optimization of a hemicellulose-utilizing pathway in Corynebacterium glutamicum for

consolidated bioprocessing of hemicellulosic biomass. ACS Synth. Biol. 2016, 5, 334–343.

Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ. Enhanced production of gamma-aminobutyrate (GABA) in recombinant

Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb. Cell Fact. 2015, 14, 21.

Kim HT, Khang TU, Baritugo KA, Hyun SM, Kang KH, Jung SH, et al. Metabolic engineering of Corynebacterium glutamicum for the

production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metab. Eng. 2019, 51, 99–109.

Duan Y, Zhai W, Liu W, Zhang X, Shi JS, Zhang X, et al. Fine-tuning multi-gene clusters via well-characterized gene expression regulatory

elements: Case study of the arginine synthesis pathway in C. glutamicum. ACS Synth. Biol. 2021, 10, 38–48.

Syukur Purwanto H, Kang MS, Ferrer L, Han SS, Lee JY, Kim HS, et al. Rational engineering of the shikimate and related pathways in

Corynebacterium glutamicum for 4-hydroxybenzoate production. J. Biotechnol. 2018, 282, 92–100.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る