リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「蒸留水の接触角と表面張力の重力依存性評価」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

蒸留水の接触角と表面張力の重力依存性評価

長沼 菜摘 野川 健人 丸尾 裕一 佐藤 直人 登尾 浩助 明治大学

2020.02.28

概要

The driving force of water movement in porous media is the matric potential gradient due to capillary force. Although capillary force was observed under microgravity, a previous paper reported that water movement in porous media was slower under microgravity than under 1G. From the capillary rise theory, we hypothesized that water movement was delayed because the contact angle and surface tension of water are functions of gravity. A larger contact angle and smaller surface tension could slow water movement under microgravity. The objective of this research is to evaluate the gravitational dependence of the contact angle and surface ten- sion of distilled water. The contact angles of water droplets and surface of water in the capillary tube were measured under microgravity induced by a 2 m drop facility. According to De Gennes' hypothesis, the eŠect of gravity on contact angle becomes dominant as the radius of a water droplet becomes larger than the capillary length (about 2 mm). We made water droplets with radii of 0.985, 2.73, 3.375, 3.925, and 4.535 mm on an acrylic plate and of 1.5 mm in an acrylic capillary tube. Surface tension was also measured using the maximum bubble pressure method under microgravity induced by a parabolic ‰ight. Although no dependence of gravity was observed for the contact angle of droplets less than 2 mm in radius, the contact angle in a capillary tube that is 3 mm in radius slightly increased under microgravity. In addition, the gravity dependence of surface tension was not observed for distilled water.

この論文で使われている画像

参考文献

Brutin D, Zhu Z, Rahli O, Xie J, Liu Q and Tadrist L. (2009), Sessile drop in microgravity: creation, contact angle and inter- face. Microgravity Science and Technology, 21: 67-76.

Egry I, Lohoefer G, and Jacobs G. (1995), Surface tension of liquid metals: Results from measurements on ground and in space. Physical Review Letters, 75: 4043-4046.

International Space Exploration Coordination Group. (2013), The Global Exploration Roadmap (2nd edition). NASA, Washington, DC, USA.

Kitaya Y, Hirai H, and Yano S. (2016): Construction of a plant culture system for producing food, recycling materials, and maintaining mental health in long-term manned space mis- sion. Space Utilization Research, 30.

Yamashita M, and Space Agriculture Saloon. (2007), Develop-ment of the Space Agriculture Concept. Space Utilization Research, 23: 396-399.

Yendler BS, Webbon B, Podolski I and Bula R J. (1996), Capil-lary movement of liquid in granular beds in microgravity. Advances in Space Research, 18: 233-237.

石原清貴・星埜由典( 2006 ),表面張力測定法.J. Jpn. Soc. Colour Mater. 79(9): 404-409.

佐藤直人・登尾浩助・丸尾裕一・名倉理紗・上出稜(2016), mG と 1G 条件下における多孔質体への水分浸潤. Space Utilization Research, 30.

小城武彦・観山正見.理科年表平成20年.378.丸善.東京.2007

ドゥジェンヌ・ブルシャールーヴィアール・ケレ.表面張力の物理学―しずく,あわ,みずたまの世界―.第 2 版. 32- 37.吉岡書店.京都.2008

登尾浩助・溝口勝(2008),月・火星の大気圧ドーム型基地における作物生産の可能性.Space Utilization Research, 24.

Hans-Jurgen Butt・Karlheinz Graf・Michael Kappl.界面の物理と化学.135-143.丸善出版.東京.2016

丸尾裕一・佐藤直人・登尾浩助(2019),形状の異なるガラス細管中の微小重力下における毛管上昇.International Journal of Microgravity Science and Application, 36: 360206-1- 360206-7.

宮崎毅・長谷川周一・粕淵辰昭.土壌物理学.第 1 版.23.朝倉書店.東京.2005

渡辺俊六・斎藤恒三(1970),最大法圧法による密度測定の実例と問題点.物理研究,13(5): 427-430.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る