リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Levilactobacillus brevis KB290とビタミンAの併用摂取によるインフルエンザ感染抑制効果」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Levilactobacillus brevis KB290とビタミンAの併用摂取によるインフルエンザ感染抑制効果

里見, 翔平 筑波大学 DOI:10.15068/0002008161

2023.09.04

概要

インフルエンザウイルス感染症は、罹患率と死亡率が高く、人間の健康に対する重大な脅
威をもたらす疾患の 1 つである。毎年のインフルエンザの流行により、世界中で約 300 万
から 500 万人が重症化し、約 29 万人から 65 万人が死亡していると推定されている。中で
も、インフルエンザ A 型および B 型ウイルス (それぞれ IAV および IBV) は公衆衛生上
の懸念事項であり、突然の発熱、筋肉痛、頭痛、倦怠感、咳、のどの痛み、鼻づまり、腹痛
などの臨床症状を引き起こすことが知られている。インフルエンザウイルス感染症予防の
第一選択手段として、ワクチン接種が挙げられる。IAV および IBV に対するワクチン接種
は通常、実用的かつ予防的な方法として行われているが、急速なウイルス変異誘発のために
十分ではない場合がある。IAV に対するワクチン接種では、医療を必要とするインフルエン
ザウイルス感染のリスクは約 50%しか減少せず、その有効性は季節、環境、人口のサブグル
ープによって異なることが報告されている。したがって、自然免疫系と適応免疫系を強化し、
IAV 感染に対する保護を促進するプロバイオティクスや栄養補助食品などの代替戦略を発
見することが望ましい。
インフルエンザに対する食品の保護的効果に関しては、乳酸菌による自然免疫・獲得免疫
機能の向上を介した効果が多く報告されている。また、ビタミンや微量元素は、免疫系をサ
ポートする上で重要な役割を果たしているため、それらが欠乏するとインフルエンザ感染
に対する宿主の感受性を高めるおそれがある。このように、免疫機能の維持や向上に関して、
栄養素や乳酸菌の単体での効果については検証されているものの、これら食品成分の併用
摂取による相加・相乗効果を調査した研究はほとんどない。併用摂取による抗インフルエン
ザ効果を検証することは、食品の食べ合わせなどの食シーンを提供し、日常生活に応用でき
る感染予防対策になり得ると考えられる。 ...

この論文で使われている画像

参考文献

[1]

World

Health

Organization

(WHO).

Influenza

(Seasonal).

Available

online:

https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 18 March

2020).

[2]

Lam, P.-P.; Coleman, B.L.; Green, K.; Powis, J.; Richardson, D.; Katz, K.; Borgundvaag, B.;

Smith-Gorvie, T.; Kwong, J.C.; Bondy, S.J.; McGeer, A. Predictors of influenza among older

adults in the emergency department. BMC Infect. Dis. 2016, 16, 616–625.

[3]

Gasparini, R.; Bonanni, P.; Amicizia, D.; Bella, A.; Donatelli, I.; Cristina, M.L.; Panatto, D.; Luigi

Lai, P. Influenza epidemiology in Italy two years after the 2009–2010 pandemic need to improve

vaccination coverage. Hum. Vaccin Immunother. 2013, 9, 561–567

[4]

Hale B.G.; Albrecht, R.A.; García-Sastre A. Innate immune evasion strategies of influenza

viruses. Future Microbiol. 2010, 5, 23-41.

[5]

Högner, K.; Wolff, T.; Pleschka, S.; Plog, S.; Gruber, A.D.; Kalinke, U.; Walmrath, H.D.; Bodner,

J.; Gattenlöhner, S.; Lewe-Schlosser, P.; Matrosovich, M.; Seeger, W.; Lohmeyer, J.; Herold, S.

Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe

influenza virus pneumonia. PLoS Pathog. 2013, 9, e1003188.

[6]

Kallfass, C.; Lienenklaus, S,; Weiss, S.; Staeheli, P. Visualizing the beta interferon response in

mice during infection with influenza A viruses expressing or lacking nonstructural protein 1. J.

Virol. 2013 87, 6925-30.

[7]

Jewell N.A.; Vaghefi, N.; Mertz, S.E.; Akter, P.; Peebles, R.S.Jr.; Bakaletz, L.O.; Durbin, R.K.;

Flaño, E.; Durbin, J.E. Differential type I interferon induction by respiratory syncytial virus and

influenza a virus in vivo. J. Virol. 2007, 81, 9790–9800.

[8]

Agrawal, P.; Nawadkar, R.; Ojha, H.; Kumar, J.; Sahu, A. Complement evasion strategies of

viruses: An Overview. Front. Microbiol. 2017, 16, 1117.

62

[9]

Villalón-Letelier, F.; Brooks, A.G.; Saunders, P.M.; Londrigan, S.L.; Reading, P.C. Host cell

restriction factors that limit influenza A infection. Viruses 2017, 9, 376.

[10]

Iwasaki A.; Pillai P.S. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 2014, 14,

315-328.

[11]

Takeuchi O.; Akira S. Pattern recognition receptors and inflammation. Cell. 2010, 140, 805–820.

[12]

Le Goffic R.; Pothlichet, J.; Vitour, D.; Fujita, T.; Meurs, E.; Chignard, M.; Si-Tahar, M. Cutting

Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral

responses in human lung epithelial cells. J. Immunol. 2007, 178, 3368–3372.

[13]

Loo, Y.M.; Fornek, J.; Crochet, N.; Bajwa, G.; Perwitasari, O.; Martinez-Sobrido, L.; Akira, S.;

Gill, M.A.; García-Sastre, A.; Katze, M.G.; Gale, M. Jr. Distinct RIG-I and MDA5 signaling by

RNA viruses in innate immunity. J. Virol. 2008, 82, 335-45.

[14]

Kato, H.; Takeuchi. O.; Sato. S.; Yoneyama. M.; Yamamoto. M.; Matsui. K.; Uematsu, S.; Jung,

A.; Kawai, T.; Ishii, K.J.; Yamaguchi, O.; Otsu, K.; Tsujimura, T.; Koh, C.S.; Reis e Sousa, C.;

Matsuura, Y.; Fujita, T.; Akira, S. Differential roles of MDA5 and RIG-I helicases in the

recognition of RNA viruses. Nature 2006,441,101-5.

[15]

Ivashkiv, L.B.; Donlin, L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014,

14, 36–49.

[16]

Krug R.M. Functions of the influenza A virus NS1 protein in antiviral defense. Curr. Opin. Virol.

2015, 12, 1–6.

[17]

Hale B.G.; Randall, R.E.; Ortín, J.; Jackson, D. The multifunctional NS1 protein of influenza A

viruses. J. Gen. Virol. 2008, 89, 2359–2376.

[18]

Gack, M.U.; Albrecht, R.A.; Urano, T.; Inn, K.S.; Huang, I.C.; Carnero, E.; Farzan, M.; Inoue,

S.; Jung, J.U.; García-Sastre, A. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to

evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe. 2009, 5, 439–449.

63

[19]

Varga, Z.T.; Ramos, I.; Hai, R.; Schmolke, M.; García-Sastre, A.; Fernandez-Sesma, A.; Palese,

P. The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the

MAVS adaptor protein. PLoS Pathog. 2011, 7, e1002067.

[20]

Graef K.M.; Vreede, F.T.; Lau, Y.F.; McCall, A.W.; Carr, S.M.; Subbarao, K.; Fodor, E. The PB2

subunit of the influenza virus RNA polymerase affects virulence by interacting with the

mitochondrial antiviral signaling protein and inhibiting expression of beta interferon. J. Virol.

2010, 84, 8433–8445.

[21]

World Health Organization. Evaluation of influenza vaccine effectiveness: A guide to the design

and

interpretation

of

observational

studies,

2017.

Available

online:

https://apps.who.int/iris/handle/10665/255203 (accessed on 19 September 2020).

[22]

Ujike, M.; Shimabukuro, K.; Mochizuki, K.; Obuchi, M.; Kageyama, T.; Shirakura, M.; Kishida,

N.; Yamashita, K.; Horikawa, H.; Kato, Y.; Fujita, N.; Tashiro, M.; Odagiri, T.; Working Group

for Influenza Virus Surveillance in Japan. Oseltamivir-resistant influenza viruses A (H1N1)

during 2007-2009 influenza seasons, Japan. Emerg. Infect. Dis. 2010, 16, 926–935.

[23]

Takeda, S.; Takeshita, M.; Kikuchi, Y.; Dashnyam, B.; Kawahara, S.; Yoshida, H.; Watanabe, W.;

Muguruma, M.; Kurokawa, M. Efficacy of oral administration of heat-killed probiotics from

Mongolian dairy products against influenza infection in mice: Alleviation of influenza infection

by its immunomodulatory activity through intestinal immunity. Int. Immunopharmacol. 2011, 11,

1976–1983.

[24]

Youn, H.-N.; Lee, D.-H.; Lee, Y.-N.; Park, J.-K.; Yuk, S.-S.; Yang, S.-Y.; Lee, H.-J.; Woo, S.-H.;

Kim, H.-M.; Lee, J-B.; Park, S-Y.; Choi, I-S.; Song, C-S. Intranasal administration of live

Lactobacillus species facilitates protection against influenza virus infection in mice. Antivir. Res.

2012, 93, 138–143.

[25]

Nobuta, Y.; Inoue, T.; Suzuki, S.; Arakawa, C.; Yakabe, T.; Ogawa, M.; Yajima, N. The efficacy

and the safety of Lactobacillus brevis KB290 as a human probiotic. Int. J. Probio. Prebio. 2009,

64

4, 263–270.

[26]

Murakami, K.; Habukawa, C.; Nobuta, Y.; Moriguchi, N.; Takemura, T. The effect of

Lactobacillus brevis KB290 against irritable bowel syndrome: A placebo-controlled double-blind

crossover trial. Biopsychosoc Med. 2012, 6, 16.

[27]

Kishi, A.; Uno, K.; Matsubara, Y.; Okuda, C.; Kishida, T. Effect of the oral administration of

Lactobacillus brevis subsp. coagulans on interferon-alpha producing capacity in humans. J. Am.

Coll. Nutr. 1996, 15, 408–412.

[28]

Fukui, Y.; Sasaki, E.; Fuke, N.; Nakai, Y.; Ishijima, T.; Abe, K.; Yajima, N. Effect of Lactobacillus

brevis KB290 on the cell-mediated cytotoxic activity of mouse splenocytes: A DNA microarray

analysis. Br. J. Nutr. 2013, 110, 1617–29.

[29]

Waki, N.; Yajima, N.; Suganuma, H.; Buddle, B.M.; Luo, D.; Heiser, A.; Zheng, T. Oral

administration of Lactobacillus brevis KB290 to mice alleviates clinical symptoms following

influenza virus infection. Lett. Appl. Microbiol. 2014, 58, 87–93.

[30]

Waki, N.; Matsumoto, M.; Fukui, Y.; Suganuma, H. Effects of probiotic Lactobacillus brevis

KB290 on incidence of influenza infection among schoolchildren: An open-label pilot study. Lett.

Appl. Microbiol. 2014, 59, 565–571.

[31]

He, R.R.; Wang, M.: Wang, C.Z.; Chen, B.T.; Lu, C.N.; Yao, X.S.; Chen, J.X.; Kurihara, H.

Protective effect of apple polyphenols against stress-provoked influenza viral infection in

restraint mice J. Agric. Food Chem. 2011, 59, 3730-7.

[32]

Urashima, M.; Segawa, T.; Okazaki, M.; Kurihara, M.; Wada, Y.; Ida, H. Randomized trial of

vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am. J. Clin. Nutr.

2010, 91, 1255-60.

[33]

Cser, M.A.; Majchrzak, D.; Rust, P.; Sziklai-László, I.; Kovács, I.; Bocskai, E.; Elmadfa, I. Serum

carotenoid and retinol levels during childhood infections. Ann. Nutr. Metab. 2004, 48, 156-62.

65

[34]

Kandasamy, M.; Suryawanshi, A.; Tundup, S.; Perez, J.T.; Schmolke, M.; Manicassamy, S.;

Manicassamy, B. RIG-I Signaling Is critical for efficient polyfunctional T cell responses during

influenza virus infection. PLoS Pathog. 2016, 12, e1005754.

[35]

Heer, A.K.; Shamshiev, A.; Donda, A.; Uematsu, S.; Akira, S.; Kopf, M.; Marsland, B.J. TLR

signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses.

J. Immunol. 2007, 178, 2182–91.

[36]

Liu, Y.; Olagnier, D.; Lin, R. Host and Viral Modulation of RIG-I-Mediated Antiviral Immunity.

Front. Immunol. 2017, 7, 662.

[37]

Surman, S.L.; Jones, B.G.; Sealy, R.E.; Rudraraju, R.; Hurwitz, J.L. Oral retinyl palmitate or

retinoic acid corrects mucosal IgA responses toward an intranasal influenza virus vaccine in

vitamin A deficient mice. Vaccine 2014, 32, 2521–2524.

[38]

Cottey, R.; Rowe, C.A.; Bender, B.S. Influenza virus. Curr. Protoc. Immunol. 2001, 42, Chapter

19, 19.11.1-19. 11. 32.

[39]

Eisfeld, A.J.; Neumann, G.; Kawaoka, Y. Influenza a virus isolation, culture and identification.

Nat. Protoc. 2014, 9, 2663–2681.

[40]

Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of

semiparametric generalized linear models. J. R. Stat. Soc. 2011, 73, 3–36.

[41]

Lenth, R.; Buerkner, P.; Herve, M.; Love, J.; Riebl, H.; Singmann, H. Emmeans: Estimated

marginal means, aka least-squares means, R package version 1.4.8; 2020. Available online:

https://CRAN.R-project.org/package=emmeans (accessed on 21 September 2020).

[42]

Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful

approach to multiple testing. J. R. Stat. Soc. 1995, 57, 289–300.

[43]

Drummond, G.B.; Vowler, S.L. Different tests for a difference: How do we do research? J.

Physiol. 2012, 590, 235–238.

66

[44]

Ludbrook, J.; Dudley, H. Why permutation tests are superior to T and F tests in biomedical

research. Am. Stat. 1998, 52, 127–132.

[45]

Maxime, H. RVAideMemoire: Testing and plotting procedures for biostatistics. R package

version 0.9-77; 2020. Available online: https://CRAN.R-project.org/package=RVAideMemoire

(accessed on 21 September 2020).

[46]

Sun, K.; Torres, L.; Metzger, D.W. A detrimental effect of interleukin-10 on protective pulmonary

humoral immunity during primary influenza A virus infection. J. Virol. 2010, 84, 5007–5014.

[47]

Langlois, R.A.; Legge, K.L. Plasmacytoid dendritic cells enhance mortality during lethal

influenza infections by eliminating virus specific CD8 T Cells. J. Immunol. 2010, 184, 4440–

4446.

[48]

Pang, I.K.; Pillai, P.S.; Iwasaki, A. Efficient influenza A virus replication in the respiratory tract

requires signals from TLR7 and RIG-I. Proc. Natl. Acad. Sci. USA 2013, 110, 13910–13915.

[49]

Keef, E.; Zhang, L.A.; Swigon, D.; Urbano, A.; Ermentrout, G.B.; Matuszewski, M.; Toapanta,

F.R.; Ross, T.M.; Parker, R.S.; Clermont, G. Discrete dynamical modeling of influenza virus

infection suggests age-dependent differences in immunity. J. Virol. 2017, 91, e00395–e00417.

[50]

Brandes, M.; Klauschen, F.; Kuchen, S.; Germain, R.N. A systems analysis identifies a

feedforward inflammatory circuit leading to lethal influenza infection. Cell 2013, 154, 197–212.

[51]

Kumova, O.K.; Fike, A.J.; Thayer, J.L.; Nguyen, L.T.; Mell, J.C.; Pascasio, J.; Stairiker, C.; Leon,

L.G.; Katsikis, P.D.; Carey, A.J. Lung transcriptional unresponsiveness and loss of early influenza

virus control in infected neonates is prevented by intranasal Lactobacillus rhamnosus GG. PLoS

Pathog. 2019, 15, e1008072.

[52]

Goto, H.; Sagitani, A.; Ashida, N.; Kato, S.; Hirota, T.; Shinoda, T.; Yamamoto, N. Anti-influenza

virus effects of both live and non-live Lactobacillus acidophilus L-92 accompanied by the

activation of Innate immunity. Br. J. Nutr. 2013, 110, 1810–1818.

67

[53]

Jung, Y.-J.; Lee, Y.-T.; Ngo, V.L.; Cho, Y.-H.; Ko, E.-J.; Hong, S.-M.; Kim, K.-H.; Jang, J.-H.;

Oh, J.-S.; Park, M.-K.; Kim, C-H.; Sun, J.; Kang, S.M. Heat-killed Lactobacillus casei confers

broad protection against influenza A virus primary infection and develops heterosubtypic

immunity against future secondary infection. Sci. Rep. 2017, 7, 17360.

[54]

Nagai, T.; Makino, S.; Ikegami, S.; Itoh, H.; Yamada, H. Effects of oral administration of yogurt

fermented

with

Lactobacillus

delbrueckii

ssp.

bulgaricus

OLL1073R-1

and

its

exopolysaccharides against influenza virus infection in mice. Int. Immunopharmacol. 2011, 11,

2246–2250.

[55]

Kawase, M.; He, F.; Kubota, A.; Yoda, K.; Miyazawa, K.; Hiramatsu, M. Heat-killed

Lactobacillus gasseri TMC0356 protects mice against influenza virus infection by stimulating

gut and respiratory immune responses. FEMS Immunol. Med. Microbiol. 2012, 64, 280–288.

[56]

Nakayama, Y.; Moriya, T.; Sakai, F.; Ikeda, N.; Shiozaki, T.; Hosoya, T.; Nakagawa, H.; Miyazaki,

T. Oral administration of Lactobacillus gasseri SBT2055 is effective for preventing influenza in

mice. Sci. Rep. 2014, 4, 4638.

[57]

Zelaya, H.; Tada, A.; Vizoso-Pinto, M.G.; Salva, S.; Kanmani, P.; Aguero, G.; Alvarez, S.;

Kitazawa, H.; Villena, J. Nasal priming with immunobiotic Lactobacillus rhamnosus modulates

inflammation-coagulation interactions and reduces influenza virus-associated pulmonary damage.

Inflamm. Res. 2015, 64, 589–602.

[58]

Park, M.-K.; Ngo, V.; Kwon, Y.-M.; Lee, Y.-T.; Yoo, S.; Cho, Y.-H.; Hong, S.-M.; Hwang, H.S.;

Ko, E.-J.; Jung, Y.-J.; et al. Lactobacillus plantarum DK119 as a probiotic confers protection

against influenza virus by modulating innate immunity. PLoS ONE 2013, 8, e75368.

[59]

Takahashi, E.; Sawabuchi, T.; Kimoto, T.; Sakai, S.; Kido, H. Lactobacillus delbrueckii ssp.

bulgaricus OLL1073R-1 feeding enhances humoral immune responses, which are suppressed by

the antiviral neuraminidase inhibitor oseltamivir in influenza A virus-infected mice. J. Dairy Sci.

68

2019, 102, 9559–9569.

[60]

Belkacem, N.; Serafini, N.; Wheeler, R.; Derrien, M.; Boucinha, L.; Couesnon, A.; CerfBensussan, N.; Gomperts Boneca, I.; Di Santo, J.P.; Taha, M.-K.; Bourdet-Sicard, R.

Lactobacillus paracasei feeding improves immune control of influenza infection in mice. PLoS

ONE 2017, 12, e0184976.

[61]

Kiso, M.; Takano, R.; Sakabe, S.; Katsura, H.; Shinya, K.; Uraki, R.; Watanabe, S.; Saito, H.;

Toba, M.; Kohda, N.; Kawaoka, Y. Protective efficacy of orally administered, heat-killed

Lactobacillus pentosus b240 against Influenza A virus. Sci. Rep. 2013, 3, 1563.

[62]

Lee, Y.-N.; Youn, H.-N.; Kwon, J.-H.; Lee, D.-H.; Park, J.-K.; Yuk, S.-S.; Erdene-Ochir, T.-O.;

Kim, K.-T.; Lee, J.-B.; Park, S.-Y.; Choi, I-S.; Song, C.S. Sublingual administration of

Lactobacillus rhamnosus affects respiratory immune responses and facilitates protection against

Influenza virus infection in mice. Antivir. Res. 2013, 98, 284–290.

[63]

Sasaki, E.; Suzuki, S.; Fukui, Y.; Yajima, N. Cell-bound exopolysaccharides of Lactobacillus

brevis KB290 enhance cytotoxic activity of mouse splenocytes. J. Appl. Microbiol. 2015, 118,

506–514.

[64]

Matsumiya, T.; Stafforini, D.M. Function and regulation of retinoic acid-inducible gene-I. Crit.

Rev. Immunol. 2010, 30, 489–513.

[65]

Lee, H.; Ko, G. Antiviral effect of vitamin A on norovirus infection via modulation of the gut

microbiome. Sci. Rep. 2016, 6, 25835.

[66]

Pino-Lagos, K.; Guo, Y.; Noelle, R.J. Retinoic acid: A key player in immunity. Biofactors 2010,

36, 430–436.

[67]

Hathcock, J.N.; Hattan, D.G.; Jenkins, M.Y.; McDonald, J.T.; Sundaresan, P.R.; Wilkening, V.L.

Evaluation of vitamin A toxicity. Am. J. Clin. Nutr. 1990, 52, 183–202.

[68]

Gerald, Y.M.; James, K.K.; Wei-Sek, H. Vitamin A hepatotoxicity in multiple family members.

69

Hepatology 1988, 8, 272–275.

[69]

Anroop, B.N.; Shery, J. A simple practice guide for dose conversion between animals and human.

J. Basic Clin. Pharm. 2016, 7, 27–31.

[70]

National

Institute

of

Health

(NIH).

Vitamin

A.

Available

online:

https://ods.od.nih.gov/factsheets/VitaminA-Consumer/ (accessed on 12 October 2022).

[71]

Lobo, G.P.; Hessel, S.; Eichinger, A.; Noy, N.; Moise, A.R.; Wyss, A.; Palczewski, K.; Lintig, J.V.

ISX is a retinoic acid-sensitive gatekeeper that controls intestinal beta, beta-carotene absorption

and vitamin A production. Fed. Am. Soc. Exp. Biol. J. 2010, 24, 1656–1666.

[72]

Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Meyskens, F.L., Jr.; Omenn, G.S.;

Valanis, B.; Williams, J.H., Jr. The beta-carotene and retinol efficacy trial: Incidence of lung

cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene

and retinol supplements. J. Natl. Cancer Inst. 2004, 96, 1743–1750.

[73]

The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E

and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J.

Med. 1994, 330, 1029–1035.

[74]

Omenn, G.S.; Goodman, G.; Thornquist, M.; Grizzle, J.; Rosenstock, L.; Barnhart, S.; Balmes,

J.; Cherniack, M.G.; Cullen, M.R.; Glass, A.; Keogh, J.; Meyskens, F. Jr.; Valanis, B.; Williams,

J. Jr. The beta-carotene and retinol efficacy trial (CARET) for chemoprevention of lung cancer

in high risk populations: Smokers and asbestos-exposed workers. Cancer Res. 1994, 54, 2038s–

2043s.

[75]

Kuster, S.P.; Shah, P.S.; Coleman, B.L.; Lam, P.-P.; Tong, A.; Wormsbecker, A.; McGeer, A.

Incidence of influenza in healthy adults and healthcare workers: A systematic review and metaanalysis. PLoS ONE 2011, 6, e26239.

[76]

Sugimura, T.; Takahashi, H.; Jounai, K.; Ohshio, K.; Kanayama, M.; Tazumi, K.; Tanihata, Y.;

Miura, Y.; Fujiwara, D.; Yamamoto, N. Effects of oral intake of plasmacytoid dendritic cells-

70

stimulative lactic acid bacterial strain on pathogenesis of influenza-like illness and

immunological response to influenza virus. Br. J. Nutr. 2015, 114, 727–733.

[77]

Sakamoto, H.; Ishikane, M.; Ueda, P. Seasonal influenza activity during the SARS-CoV-2

outbreak in Japan. JAMA 2020, 323, 1969–1971.

[78]

Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.;

et al. A novel coronavirus from patients with pneumonia in China. N. Engl. J. Med. 2020, 382,

727–733.

[79]

厚生労働省, Outbreak of Patients with Pneumonia Associated with Coronavirus [1st case], 2020,

Available online: https://www.mhlw.go.jp/stf/newpage_08906.html (accessed on 18 November

2020).

[80]

World Health Organization. 2020. Available online: https://www.who.int/docs/defaultsource/coronaviruse/situation-reports/

20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4

(accessed on 18 November 2020).

[81]

厚 生 労 働 省 , Prevention measures against coronavirus disease 2019 (COVID-19). 2020,

Available online: https://www.mhlw.go.jp/content/10900000/000597148.pdf (accessed on 18

November 2020).

[82]

Washing

hands.

2020,

Available

online:

https://www.mhlw.go.jp/content/10900000/000597149.pdf (accessed on 18 November 2020).

[83]

Coughing

manners.

2020,

Available

online:

https://www.mhlw.go.jp/content/10900000/000597150.pdf (accessed on 18 November 2020).

[84]

Deyle, E.R.; Maher, M.C.; Hernandez, R.D.; Basu, S.; Sugihara, G. Global environmental drivers

of influenza. Proc. Natl. Acad. Sci. USA 2016, 113, 13081–13086

[85]

Muto, K.; Yamamoto, I.; Nagasu, M.; Tanaka, M.; Wada, K. Japanese citizens’ behavioral changes

and preparedness against COVID-19: An online survey during the early phase of the pandemic.

71

PLoS ONE 2020, 15, e0234292.

[86]

World

Health

Organization.

2017.

Available

online:

https://www.who.int/influenza/preparedness/pandemic/guidance_

pandemic_influenza_surveillance_2017/en/ (accessed on 21 November 2020).

[87]

Matsumoto, M.; Waki, N.; Suganuma, H.; Takahashi, I.; Kurauchi, S.; Sawada, K.; Tokuda, I.;

Misawa, M.; Ando, M.; Itoh, K.; Ihara, K.; Nakaji, S. Association between biomarkers of

cardiovascular diseases and the blood concentration of carotenoids among the general population

without apparent illness. Nutrients 2020, 12, 2310.

[88]

Minister

of

Health,

Labour

and

Welfare.

2020.

Available

online:

https://www.mhlw.go.jp/content/10900000/000687163.pdf (accessed on 18 June 2021).

[89]

Minister

of

Health,

Labour

and

Welfare.

2020.

Available

online:

https://www.mhlw.go.jp/content/10904750/000586561.pdf (accessed on 29 June 2021).

[90]

Kinoshita, T.; Maruyama, K.; Suyama, K.; Nishijima, M.; Akamatsu, K.; Jogamoto, A.; Katakami,

K.; Saito, I. The effects of OLL1073R-1 yogurt intake on influenza incidence and immunological

markers among women healthcare workers: A randomized controlled trial. Food Funct. 2019, 10,

8129–8136

[91]

Namba, K.; Hatano, M.; Tomoko Yaeshima, T.; Takase, M.; Suzuki, K. Effects of Bifidobacterium

longum BB536 Administration on influenza infection, influenza vaccine antibody titer, and cellmediated immunity in the elderly. Biosci. Biotechnol. Biochem. 2010, 74, 939–945.

[92]

Chew, B.P.; Park, J.S. Carotenoid action on the immune response. J. Nutr. 2004, 134, 257S–261S

[93]

Schindler, M. Theory of synergistic effects: Hill-type response surfaces as ‘null-interaction'

models for mixtures. Theor. Biol. Med. Model. 2017, 14, 15.

[94]

Gudas, L.J. Retinoids and vertebrate development. J. Biol. Chem. 1994, 369, 15399-402.

[95]

McDowell, E.M.; Keenan, K.P.; Huang, M. Effects of vitamin A-deprivation on hamster tracheal

72

epithelium. A quantitative morphologic study. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.

1984, 45, 197-219.

[96]

McDowell, E.M.; Keenan, K.P.; Huang, M. Restoration of mucociliary tracheal epithelium

following deprivation of vitamin A. A quantitative morphologic study. Virchows Arch. B Cell

Pathol. Incl. Mol. Pathol. 1984, 45, 221-40.

[97]

Koo, J.S.; Jetten, A.M.; Belloni, P.; Yoon, J.H.; Kim, Y.D.; Nettesheim, P. Role of retinoid

receptors in the regulation of mucin gene expression by retinoic acid in human tracheobronchial

epithelial cells. Biochem J. 1999, 338, 351-7.

[98]

Koo, J.S.; Yoon, J.H.; Gray, T.; Norford, D.; Jetten, A.M.; Nettesheim, P. Restoration of the

mucous phenotype by retinoic acid in retinoid-deficient human bronchial cell cultures: changes

in mucin gene expression. Am. J. Respir. Cell Mol. Biol. 1999, 20, 43-52.

[99]

Stephensen, C.B.; Blount, S.R.; Schoeb, T.R.; Park, J.Y. Vitamin A deficiency impairs some

aspects of the host response to influenza A virus infection in BALB/c mice. J. Nutri. 1993, 125,

823-33.

[100] Zhang, Y.; Lu, Y.; Wang, S.; Yang, L.; Xia, H.; Sun, G. Excessive Vitamin A supplementation

increased the incidence of acute respiratory tract infections: A systematic review and metaanalysis. Nutrients. 2021, 13, 4251.

[101] Stavropoulou, E.; Bezirtzoglou, E. Probiotics in medicine: A long debate. Front. Immunol. 2020,

11, 2192.

[102] Enaud, R.; Prevel, R.; Ciarlo, E.; Beaufils, F.; Wieërs, G.; Guery, B.; Delhaes, L. The gut-lung

axis in health and respiratory diseases: A place for inter-organ and inter-kingdom crosstalks. Front.

Cell Infect. Microbiol. 2020, 10, 9.

[103] Trivedi, R.; Barve, K. Gut microbiome a promising target for management of respiratory diseases.

Biochem. J. 2020, 477, 2679-2696.

[104] Zhao, L.; Mao, Y.; Yu, H.; Liu, H.; Wang, C.; Liu, J.; Han, Y.; Bi, Y.; Zhang, D. The preventive

73

effects of Lactobacillus casei on acute lung injury induced by lipopolysaccharide. Indian J.

Microbiol. 2021, 61, 370-382.

74

謝辞

本学位論文をまとめるにあたり、多くのご支援とご指導を賜りました、指導教員である吉田

滋樹 准教授に深く感謝いたします。また、本論文作成にあたり、審査委員として多くのご

助言をいただきました、青柳 秀紀 教授、柏原 真一 准教授、加香 孝一郎 講師には

深く感謝いたします。

インフルエンザ感染モデル試験におきましては、多くのご支援とご指導をいただきました、

AgResearch の Axel Heiser 博士、Sandeep Gupta 博士、Sofia Kanum 博士、Poppy Miller 博士な

らびに同研究機関の皆様に深く感謝いたします。

また、博士後期課程進学前から現在にわたりご指導いただきました、カゴメ株式会社 イノ

ベーション本部

本部長

大行 博士、食健康研究部

上田

宏幸

氏、

健康事業部

シニアスペシャリスト

菅沼

部長 鈴木 重德 博士、 農業資源開発部 課長 井上 拓

郎 氏、食健康研究部 課長 高橋 慎吾 氏に心より感謝申し上げます。

また、本研究を遂行する上でご助言や議論いただいた、カゴメ株式会社 イノベーション本

部 食健康研究部 荒川 千夏 女史、食健康研究部 脇 尚子 博士、そして、食健康研

究部の皆様に厚く御礼申し上げます。

最後に、いつも傍で支えてくれている妻 彩華、そして、好奇心を持ち続けることの大切さ

に気づかせてくれる長女 優衣、長男 勇磨に心から感謝いたします。

75

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る