リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「抗PD-1抗体の抗腫瘍効果を高める新規薬剤の同定及びその機能解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

抗PD-1抗体の抗腫瘍効果を高める新規薬剤の同定及びその機能解析

竹田, 和彦 北海道大学

2021.09.24

概要

がんは,世界の主要死亡原因の第 2 位であり,2018 年では全世界において,約 1700万人が発症し,約 950 万人の死亡に関わっているとの報告がある。さらに 2040 年に は,約 2750 万人が新たにがんを発症し,1630 万人の死亡原因となると予測されてい る。がん治療は,外科手術,放射線治療,薬物療法の 3 つで大別されるが,放射線治 療や薬物療法に抵抗性を示す患者や,いずれの治療法でも再発・再燃する患者が存在 することから,新たな治療法が求められている。近年,ヒトに元来備わっている免疫 機能により,がんを排除することを目指した「がん免疫療法」が,既存治療が効果を 示さなくなった患者に治療効果を示すことや長期生存率が高いといった特徴を示し,第四のがん治療法として期待されている 1)。生体は自身の免疫の恒常性を保つために,自己に対する過剰な免疫反応を抑制する機構を備えており,それらに関与する分子群 が,Programmed cell death 1(PD-1)/ PD-1 ligand 1(PD-L1)及び Cytotoxic T-lymphocyte associated antigen-4(CTLA-4)を含む「免疫チェックポイント分子」である。

この論文で使われている画像

参考文献

1) Couzin-Frankel J. (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science, 342, 1432–1433.

2) Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, et al. (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol., 8, 765–772.

3) Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, et al. (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med., 192, 1027–1034.

4) Nishimura H, Honjo T. (2001) PD-1: an inhibitory immunoreceptor involved in peripheral tolerance. Trends Immunol., 22, 265–268.

5) Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, et al. (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol., 2, 261–268.

6) Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, et al. (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet, 387, 1837–1846.

7) 吉田隆雄, 幸田健一, 中尾進太郎, 大山行也. (2015) 新規免疫チェックポイント阻害薬ヒト型抗ヒトPD-1抗体ニボルマブ(オプジーボ®点滴静注20 mg,100 mg)の薬理学的特性および臨床効果. 日薬理誌, 146, 106–114.

8) Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. (2013) A rheostat for immune responses: The unique properties of PD-1 and their advantages for clinical application. Nat. Immunol., 14, 1212–1218.

9) Hino R, Kabashima K, Kato Y, Yagi H, Nakamura M, et al. (2010) Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer, 116, 1757–1766.

10) Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, et al. (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. U.S.A., 99, 12293–12297.

11) Iwai Y, Terawaki S, Honjo T. (2005) PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int. Immunol., 17, 133–144.

12) Shitara K, Özgüroğlu M, Bang YJ, Di Bartolomeo M, Mandalà M, et al. (2018) Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro- oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet, 392, 123–133.

13) Ribas A, Wolchok JD. (2018) Cancer immunotherapy using checkpoint blockade. Science, 359, 1350–1355.

14) Robert C, Long G V, Brady B, Dutriaux C, Maio M, et al. (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med., 372, 320– 330.

15) Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, et al. (2015) Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med., 373, 123–135.

16) Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, et al. (2015) Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med., 373, 1627–1639.

17) Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, et al. (2015) Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med., 373, 1803–1813.

18) Tang J, Yu JX, Hubbard-Lucey VM, Neftelinov ST, Hodge JP, et al. (2018) Trial watch: The clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nat. Rev. Drug. Discov., 17, 854–855.

19) Chen DS, Mellman I. (2013) Oncology meets immunology: The cancer-immunity cycle. Immunity, 39, 1–10.

20) Ribas A, Wolchok JD. (2018) Cancer immunotherapy using checkpoint blockade. Science, 359, 1350–1355.

21) Topalian SL, Taube JM, Anders RA, Pardoll DM. (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer., 16, 275–287.

22) Scharping NE, Menk A V, Whetstone RD, Zeng X, Delgoffe GM. (2017) Efficacy of PD-1 Blockade Is Potentiated by Metformin-Induced Reduction of Tumor Hypoxia. Cancer Immunol. Res., 5, 9–16.

23) Chowdhury PS, Chamoto K, Kumar A, Honjo T. (2018) PPAR-Induced Fatty Acid Oxidation in T Cells Increases the Number of Tumor-Reactive CD8. Cancer Immunol. Res., 6, 1375–1387.

24) Tu MM, Lee FYF, Jones RT, Kimball AK, Saravia E, et al. (2019) Targeting DDR2 enhances tumor response to anti-PD-1 immunotherapy. Sci. Adv., 5, eaav2437.

25) Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, et al. (2017) In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature, 547, 413–418.

26) Wang C, Thudium KB, Han M, Wang XT, Huang H, et al. (2014) In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol. Res., 2, 846–856.

27) Li Y, Carpenito C, Wang G, Surguladze D, Forest A, et al. (2018) Discovery and preclinical characterization of the antagonist anti-PD-L1 monoclonal antibody LY3300054. J. Immunother. Cancer., 6, 31.

28) Stecher C, Battin C, Leitner J, Zettl M, Grabmeier-Pfistershammer K, et al. (2017) PD-1 Blockade Promotes Emerging Checkpoint Inhibitors in Enhancing T Cell Responses to Allogeneic Dendritic Cells. Front. Immunol., 8, 572.

29) Selby MJ, Engelhardt JJ, Johnston RJ, Lu LS, Han M, et al. (2016) Preclinical Development of Ipilimumab and Nivolumab Combination Immunotherapy: Mouse Tumor Models, In Vitro Functional Studies, and Cynomolgus Macaque Toxicology. PLoS One, 11, e0161779.

30) Woo SR, Turnis ME, Goldberg M V, Bankoti J, Selby M, et al. (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res., 72, 917–927.

31) Qin S, Xu L, Yi M, Yu S, Wu K, et al. (2019) Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol. Cancer, 18, 155.

32) Bell J. Amlexanox for the treatment of recurrent aphthous ulcers. (2005) Clin. Drug Investig., 25, 555–566.

33) Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, et al. (2002) Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol., 169, 5538– 5545.

34) Schafer PH, Gandhi AK, Loveland MA, Chen RS, Man HW, et al. (2003) Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs. J. Pharmacol. Exp. Ther., 305, 1222– 1232.

35) Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, et al. (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol., 26, 317–325.

36) Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, et al. (2017) IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest., 127, 2930– 2940.

37) Davis AA, Patel VG. (2019) The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer, 7, 278.

38) Jiang P, Gu S, Pan D, Fu J, Sahu A, et al. (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 24, 1550–1558.

39) Terness P, Chuang JJ, Opelz G. (2006) The immunoregulatory role of IDO-producing human dendritic cells revisited. Trends Immunol., 27, 68–73.

40) Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, et al. (2017) CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat. Rev., 63, 40–47.

41) Shi H, Han X, Sun Y, Shang C, Wei M, et al. (2018) Chemokine (C-X-C motif) ligand 1 and CXCL2 produced by tumor promote the generation of monocytic myeloid- derived suppressor cells. Cancer Sci., 109, 3826–3839.

42) Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, et al. (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun., 7, 12150.

43) Sangaletti S, Tripodo C, Sandri S, Torselli I, Vitali C, et al. (2014) Osteopontin shapes immunosuppression in the metastatic niche. Cancer Res., 74, 4706–4719.

44) Reilly SM, Chiang SH, Decker SJ, Chang L, Uhm M, et al. (2013) An inhibitor of the protein kinases TBK1 and IKK-ɛ improves obesity-related metabolic dysfunctions in mice. Nat. Med., 19, 313–321.

45) Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, et al. (2017) Profiling of PD- 1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov., 8, 196–215.

46) Xiao Y, Zou Q, Xie X, Liu T, Li HS, et al. (2017) The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity. J. Exp. Med., 214, 1493–1507.

47) Terawaki S, Chikuma S, Shibayama S, Hayashi T, Yoshida T, et al. (2011) IFN-α directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J. Immunol., 186, 2772–2779.

48) Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, et al. (2016) Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade. Cell, 167, 1540-1554.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る