リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mitomycin C treatment improves pancreatic islet graft longevity in intraportal islet transplantation by suppressing proinflammatory response」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mitomycin C treatment improves pancreatic islet graft longevity in intraportal islet transplantation by suppressing proinflammatory response

Yamane, Kei 京都大学 DOI:10.14989/doctor.k22884

2021.01.25

概要

The in vitro culture period prior to cell transplantation (i.e. pancreatic islet transplantation) enables cell modifcation and is thus advantageous. However, the islet preconditioning method has not been fully explored. Here we present a simple approach for islet preconditioning that uses the antibiotic mitomycin C (MMC), which has antitumor activity, to reduce islet immunogenicity and prevent proinfammatory events in an intraportal islet transplantation model. Freshly isolated mice islets were treated for 30 min with 10 μg/mL MMC or not, cultured for 20 h and transplanted into the livers of syngeneic or allogeneic diabetic mouse recipients. In the allogeneic model, MMC preconditioning signifcantly prolonged graft survival without requiring immunosuppressants. In vitro, MMC treatment suppressed the expression of proinfammatory cytokines in islet allografts, while immunohistochemical studies revealed the suppression of infammatory cell infltration into MMCtreated allografts relative to untreated allografts. Furthermore, MMC preconditioning signifcantly suppressed the mRNA expression of proinfammatory cytokines into the transplant site and induced the diferentiation of regulatoryT cells with the ability to suppress ¬CD4+T cell-mediated immune responses. In conclusion, islet preconditioning with MMC prolonged graft survival in an intraportal islet transplantation model by suppressing proinfammatory events and inducing potentially regulatory lymphocytes.

参考文献

1. Hering, B. J. et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care 39, 1230–1240. https://doi.org/10.2337/dc15-1988 (2016).

2. Foster, E. D. et al. Improved health-related quality of life in a phase 3 islet transplantation trial in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care 41, 1001–1008. https://doi.org/10.2337/dc17-1779 (2018).

3. Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238. https://doi.org/10.1056/NEJM200007273430401 (2000).

4. Shapiro, A. M. et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355, 1318–1330. https ://doi.org/10.1056/NEJMoa061267 (2006).

5. McCall, M. & Shapiro, A. M. Update on islet transplantation. Cold Spring Harb. Perspect. Med. 2, a007823. https://doi.org/10.1101/ cshperspect.a007823 (2012).

6. Barton, F. B. et al. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care 35, 1436–1445. https:// doi.org/10.2337/dc12-0063 (2012).

7. Bennet, W., Groth, C. G., Larsson, R., Nilsson, B. & Korsgren, O. Isolated human islets trigger an instant blood mediated infammatory reaction: Implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes. Ups. J. Med. Sci. 105, 125–133 (2000).

8. Citro, A., Cantarelli, E. & Piemonti, L. Anti-infammatory strategies to enhance islet engrafment and survival. Curr. Diabetes Rep. 13, 733–744. https://doi.org/10.1007/s11892-013-0401-0 (2013).

9. de Kort, H., de Koning, E. J., Rabelink, T. J., Bruijn, J. A. & Bajema, I. M. Islet transplantation in type 1 diabetes. BMJ 342, d217. https://doi.org/10.1136/bmj.d217 (2011).

10. Mihalov, M. L., Gattuso, P., Abraham, K., Holmes, E. W. & Reddy, V. Incidence of post-transplant malignancy among 674 solidorgan-transplant recipients at a single center. Clin. Transplant 10, 248–255 (1996).

11. Zhang, N. et al. Sirolimus is associated with reduced islet engrafment and impaired beta-cell function. Diabetes 55, 2429–2436. https://doi.org/10.2337/db06-0173 (2006).

12. Nishimura, R. et al. Tacrolimus inhibits the revascularization of isolated pancreatic islets. PLoS ONE 8, e56799. https://doi. org/10.1371/journal.pone.0056799 (2013).

13. Noguchi, H. et al. Islet culture/preservation before islet transplantation. Cell Med. 8, 25–29. https://doi.org/10.3727/215517915X 689047 (2015).

14. Lau, H., Reemtsma, K. & Hardy, M. A. Prolongation of rat islet allograf survival by direct ultraviolet irradiation of the graf. Science 223, 607–609 (1984).

15. Gotoh, M. et al. Gamma-irradiation as a tool to reduce immunogenicity of islet allo- and xenografs. Horm. Metab. Res. Suppl. 25, 89–96 (1990).

16. Matsuyama, S. et al. Permanent acceptance of mitomycin C-treated islet allograf. Transplantation 76, 65–71. https://doi. org/10.1097/01.TP.0000069232.48055.03 (2003).

17. Gunji, T. et al. Mitomycin-C treatment followed by culture produces long-term survival of islet xenografs in a rat-to mouse model. Cell Transplant 17, 619–629 (2008).

18. Cantarelli, E. et al. Murine animal models for preclinical islet transplantation: No model fts all (research purposes). Islets 5, 79–86. https://doi.org/10.4161/isl.24698 (2013).

19. Vinay, D. S., Kim, C. H., Choi, B. K. & Kwon, B. S. Origins and functional basis of regulatory CD11c+CD8+ T cells. Eur. J. Immunol. 39, 1552–1563. https://doi.org/10.1002/eji.200839057 (2009).

20. Mellgren, A., Schnell Landstrom, A. H., Petersson, B. & Andersson, A. Te renal subcapsular site ofers better growth conditions for transplanted mouse pancreatic islet cells than the liver or spleen. Diabetologia 29, 670–672 (1986).

21. Kim, H. I., Yu, J. E., Park, C. G. & Kim, S. J. Comparison of four pancreatic islet implantation sites. J. Korean Med. Sci. 25, 203–210. https://doi.org/10.3346/jkms.2010.25.2.203 (2010).

22. Lacy, P. E., Ricordi, C. & Finke, E. H. Efect of transplantation site and alpha L3T4 treatment on survival of rat, hamster, and rabbit islet xenografs in mice. Transplantation 47, 761–766 (1989).

23. Wood, K. J. & Goto, R. Mechanisms of rejection: Current perspectives. Transplantation 93, 1–10. https://doi.org/10.1097/TP.0b013 e31823cab44 (2012).

24. Negi, S. et al. Analysis of beta-cell gene expression reveals infammatory signaling and evidence of dediferentiation following human islet isolation and culture. PLoS ONE 7, e30415. https://doi.org/10.1371/journal.pone.0030415 (2012).

25. Sato, N. et al. Ex vivo pretreatment of islets with mitomycin c: Reduction in immunogenic potential of islets by suppressing secretion of multiple chemotactic factors. Cell Transplant 26, 1392–1404. https://doi.org/10.1177/0963689717721233 (2017).

26. Sahraoui, A. et al. Anakinra and tocilizumab enhance survival and function of human islets during culture: Implications for clinical islet transplantation. Cell Transplant 23, 1199–1211. https://doi.org/10.3727/096368913X667529 (2014).

27. Angaswamy, N., Fukami, N., Tiriveedhi, V., Cianciolo, G. J. & Mohanakumar, T. LMP-420, a small molecular inhibitor of TNFalpha, prolongs islet allograf survival by induction of suppressor of cytokine signaling-1: Synergistic efect with cyclosporin-A. Cell Transplant 21, 1285–1296. https://doi.org/10.3727/096368911X637371 (2012).

28. Lee, I. et al. Blocking the monocyte chemoattractant protein-1/CCR2 chemokine pathway induces permanent survival of islet allografs through a programmed death-1 ligand-1-dependent mechanism. J. Immunol. 171, 6929–6935 (2003).

29. Min, B. H. et al. Delayed revascularization of islets afer transplantation by IL-6 blockade in pig to non-human primate islet xenotransplantation model. Xenotransplantation https://doi.org/10.1111/xen.12374 (2018).

30. Merani, S., Truong, W. W., Hancock, W., Anderson, C. C. & Shapiro, A. M. J. Chemokines and their receptors in islet allograf rejection and as targets for tolerance induction. Cell Transplant 15, 295–309. https://doi.org/10.3727/000000006783981963 (2006).

31. Sayegh, M. H. & Turka, L. A. Te role of T-cell costimulatory activation pathways in transplant rejection. N. Engl. J. Med. 338, 1813–1821. https://doi.org/10.1056/NEJM199806183382506 (1998).

32. Yoshida, T. et al. Te impact of c-fos/activator protein-1 inhibition on allogeneic pancreatic islet transplantation. Am. J. Transplant 15, 2565–2575. https://doi.org/10.1111/ajt.13338 (2015).

33. Afonso, L. C. et al. Te adjuvant efect of interleukin-12 in a vaccine against Leishmania major. Science 263, 235–237 (1994).

34. Hsieh, C. S. et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

35. Ito, T. et al. Analysis of the role of negative T cell costimulatory pathways in CD4 and CD8 T cell-mediated alloimmune responses in vivo. J. Immunol. 174, 6648–6656 (2005).

36. Chen, Z. et al. CD11c(high)CD8+ regulatory T cell feedback inhibits CD4 T cell immune response via Fas ligand-Fas pathway. J. Immunol. 190, 6145–6154. https://doi.org/10.4049/jimmunol.1300060 (2013).

37. Pawar, A. A. et al. Modulation of mitomycin C-induced genotoxicity by acetyl- and thio-analogues of salicylic acid. In Vivo 23, 303–307 (2009).

38. Saito, T. et al. Mitomycin C treatment signifcantly reduces central damage of islets in culture. Pancreas 41, 245–252. https://doi. org/10.1097/MPA.0b013e31822461c7 (2012).

39. Pirnia, F., Schneider, E., Betticher, D. C. & Borner, M. M. Mitomycin C induces apoptosis and caspase-8 and -9 processing through a caspase-3 and Fas-independent pathway. Cell Death Difer. 9, 905–914. https://doi.org/10.1038/sj.cdd.4401062 (2002).

40. Park, I. C. et al. Mitomycin C induces apoptosis in a caspases-dependent and Fas/CD95-independent manner in human gastric adenocarcinoma cells. Cancer Lett. 158, 125–132 (2000).

41. Wu, K. Y., Wang, H. Z. & Hong, S. J. Mechanism of mitomycin-induced apoptosis in cultured corneal endothelial cells. Mol. Vis. 14, 1705–1712 (2008).

42. Goto, M. et al. Suppression of hepatic allograf rejection in the rat by mitomycin C-treated donor splenocytes: In situ splenic distribution of donor class I major histocompatibility complex antigen-positive cells in the recipient. J. Surg. Res. 60, 216–223. https ://doi.org/10.1006/jsre.1996.0034 (1996).

43. Liu, L. et al. Pretreatment of transfused donor splenocytes and allografs with mitomycin C attenuates acute rejection in heart transplantation in mice. Transplant Proc. 46, 1169–1174. https://doi.org/10.1016/j.transproceed.2013.11.052 (2014).

44. Vinay, D. S., Cha, K. & Kwon, B. S. Dual immunoregulatory pathways of 4–1BB signaling. J. Mol. Med. (Berl.) 84, 726–736. https ://doi.org/10.1007/s00109-006-0072-2 (2006).

45. Ohmura, Y. et al. Combined transplantation of pancreatic islets and adipose tissue-derived stem cells enhances the survival and insulin function of islet grafs in diabetic mice. Transplantation 90, 1366–1373. https://doi.org/10.1097/TP.0b013e3181fa31 (2010).

46. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).

47. Toda, Y. et al. Application of tyramide signal amplifcation system to immunohistochemistry: A potent method to localize antigens that are not detectable by ordinary method. Pathol. Int. 49, 479–483 (1999).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る