リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「モモンガ属における集団営巣行動の生態学的意義」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

モモンガ属における集団営巣行動の生態学的意義

菊池 隼人 帯広畜産大学

2022.11.04

概要

動物において,群れを作る或いは作らない理由を明らかにすることは,生態学的に興味深い命題である.これを明らかにするために,集団生活と単独生活を切り替える動物を対象に,社会性を切り替える要因や過程についてこれまでに研究がなされてきた.本研究では単独性である留歯目リス科のモモンガ属(Pteromys)が行う‘集団営巣(communalnesting)'と呼ばれる群れ行動を対象に,社会性が変化する要因およびその過程を明らかにし,本行動が持つ生態学的な意義について検討を行った.
第2章では,ニホンモモンガP.momongaにおける集団営巣の生態学的機能が体温保持,または交尾相手の確保であるという仮説の検証を行った.2017年度~2019年度の積雪期である12月~翌年3月に,カメラトラップを用いて本種の樹洞巣3ヶ所を観察し,集団営巣に参加する個体数(集団サイズ)の変化と,巣穴周辺での交尾行動を観察した.また,集団サイズと気温の関係を評価するため,単独で営巣した日と,集団で営巣した日の日最低気温を比較した.その結果,集団サイズは1~9個体で変動していたが,集団サイズの変化と気温との関係は見られなかった.一方で同じ巣穴を利用している個体同士の交尾が2例観察された.以上のことから,ニホンモモンガが体温保持のために集団営巣を行うという仮説は支持されなかったが,繁殖のために集団営巣を行うという可能性が示唆された.
第3章では,集団営巣が体温保持にどの程度有効であるのかを明らかにするため,タイリクモモンガP.volansによる営巣が,巣内空間を温める効果を検証した.積雪期である2021年1月24日~3月31日に,本種によって集団営巣が行われた2ヶ所の樹洞巣の内部温度を,本種が営巣した日と営巣しなかった日で比較した.また,巣内温度の日内変化を調べ,巣外の温度変化と比較した.その結果,本種の営巣時に,巣内と巣外の温度差が大きくなることが確認された.また,巣内における日内の温度変化の幅は,巣外よりも小さかった.以上のことから,巣内における個体の存在が巣内の温度を高めることが明らかになり,加えて,本種が営巣する樹洞巣の日内温度は,夜間において下がりにくく,日中では上がりにくいという特徴を持つことが明らかになった.
第4章では,集団営巣の有無および営巣メンバーの構成が,気象条件や繁殖状態に影響されるという仮説の検証を行った.非積雪期である2019年~2021年の5月~10月に,巣箱に営巣しているタイリクモモンガ個体を捕獲し,1)集団営巣の有無と月平気温の関係,2)営巣した日から過去1週間の日平均気温および日降水量との関係を調べた.また,営巣メンバー構成に交尾期か否かが影響しているのかを明らかにするため,雌雄混在での営巣の有無と,交尾期か否かの関係を調べた.その結果,月の平均気温は,集団営巣の有無に影響を与えなかったが,短期間の気象条件(営巣前5日間および6日間)は,集団営巣の有無と有意な関係が認められた.また,雌雄混在の集団営巣の例数は,交尾期か否かに応じて変化し,交尾期には雌雄が混在した集団が形成されにくく,交尾相手の確保を目的に集団営巣が行われていないことが示唆された.以上のことから,非積雪期(5月〜10月)における集団営巣の主な目的は,体温保持であることが示唆された.

第5章では,タイリクモモンガの積雪期における集団営巣の形成〜崩壊過程を明らかにし,営巣メンバーの構成と気温および交尾行動との関係を示すことを試みた.2020年9月1日〜2021年4月30日に,タイリクモモンガの営巣が確認された2ヶ所の巣において,PITタグロガーおよびビデオカメラを用いて,営巣メンバーとその行動を日ごとに観察した.そして,個体同士の同居の度合いを示す単純比率指数(SRI)と,月平均気温の関係を調べた.その結果,集団営巣は11月上旬に形成された後,3月まで固定されたメンバーによって集団が維持され,その後集団は崩壊した.また,SRIと月平均気温の間に相関は見られなかったが,気温が一定の値を下回ると,SRIが高い値で維持される傾向が見られた.そして,ビデオカメラによる観察によって,交尾行動が増加した3月に営巣メンバーの変化が認められた.以上の結果から,積雪期の集団営巣は11月頃に形成され,積雪期の間はその集団が維持されることが示唆された.そして,集団営巣は気温の上昇または繁殖行動によって崩壊する可能性が考えられた.
第2章〜第5章の結果を併せて考えると,モモンガ属における集団営巣行動の意義(目的)は,同じ巣を利用することによる,体温の保持と交尾相手の確保の両方であると考えられた.そして,個体が集団営巣する目的は,季節や個体の状態に応じて,どちらかに偏る様な変化を示すことが推察された.

この論文で使われている画像

参考文献

Airapetyants, A. E. and Fokin, I. M. 2003. Biology of European flying squirrel Pteromys volans L. (Rodentia: Pteromyidae) in the north-west of Russia. Russian Journal of Theriology 2: 105–113.

Andrews, R and Belknap, R. W. 1986. Bioenelgetic benefits of huddling by deer mice (Peromyscus maniculatus). Comparative Biochemistry and Physiology Part A: Physiology 85: 775–778.

Armitage, K. B. 1981. Sociality as a Life-History Tactic of Ground Squirrels.

Oecologia 48: 36–49.

Armitage, K. B. 1998. Reproductive strategies of yellow-bellied marmots: energy conservation and differences between the sexes. Journal of Mammalogy 79: 385–393.

Armitage, K. B. 2012. Sociality, individual fitness and population dynamics of yellow-bellied marmots. Molecular Ecology 21: 532–540.

Ausband, D. E. 2018. Multiple breeding individuals within groups in a social carnivore. Journal of Mammalogy 99: 836–844.

浅利裕伸.2015.タイリクモモンガ用樹洞トラップの有効性.哺乳類科学55:53–57.

浅利裕伸.2018.都市近郊林に生息するエゾモモンガの生態.リスとムササビ 41:3–6.

浅利裕伸・柳川久.2008.分断された狭小森林に生息するエゾモモンガ

Pteromys volans orii による巣の利用.野生生物保護 11:7–10.

浅利裕伸・山口裕司・柳川 久.2009.野外観察によって確認されたエゾモモンガの採餌物.森林野生動物 33:7–11.

Asari, Y. and Yanagawa, H. 2016. A Preliminary study of communal nesting of Siberian flying squirrels Pteromys volans in Japan. Mammal Study 41: 97– 100.

Asari, Y. and Yanagawa, H. 2019. Home range and nest arrangement of the Siberian flying squirrel Pteromys volans in an urban edge, northern Japan. Polish Journal of Ecology 67: 159–167.

Bauwens, D. and Claus, K. 2021. Basking aggregations in the adder (Vipera berus): attraction to conspecific cues or to scarce suitable microhabitats? Journal of Ethology 39: 249–257.

Blank, D. A. 2020. Insect-repelling behavior in goitered gazelles: responses to biting fly attack. European Journal of Wildlife Research 66: 1–11.

Brien, S. L. O., Tammone, M. N., Cuello, P. A. and Lacey, E. A. 2021. Multi‑year assessment of variability in spatial and social relationships in a subterranean rodent, the highland tuco‑tuco (Ctenomys opimus). Behavioral Ecology and Sociobiology: 1–13.

Brotherton, P. N. M., Pemberton, J. M., Komers, P. E. and Malarky, G. 1997.

Genetic and behavioural evidence of monogamy in a mammal, Kirk's dik- dik. Proceedings of the Royal Society B: Biological Sciences 264: 675–681. Canals, M., Rosenmann, M. and Bozinovic, F. 1997. Geometrical aspects of the energetic effectiveness of huddling in small mammals. Acta Theriologica

42: 321–328.

Clutton-Brock, T. H. et al. 2001. Effects of helpers on juvenile development and survival in meerkats. Science 293: 2446–2449.

Creel, S. and Creel, N. M. 1995. Communal hunting and pack size in African wild dogs, Lycaon pictus. Animal Behaviour 50: 1325–1339.

Ebensperger, L. A., Hurtado, M. J., Soto-Gamboa, M., Lacey, E. A. and Chang, A.

T.2004.Communalnestingandkinshipindegus(Octodondegus).

Naturwissenschaften 91: 391–395.

Edelman, A. J. and Koprowski, J. L. 2007. Communal nesting in asocial Abert’s squirrels : the role of social thermoregulation and breeding strategy. Ethology 113: 147–154.

Eppley, T. M., Watzek, J. Hall, K. and Donati, G. 2017. Climatic, social and reproductive influences on behavioural thermoregulation in a female- dominated lemur. Animal Behaviour 134: 25–34.

Fietz, J. Klose, S. M. and Kalko, E. K. V. 2010. Behavioural and physiological consequencesofmalereproductivetrade-offinedibledormice.

Naturwissenschaften 97: 883–890.

Fox, J. and Weisberg, S. 2019. An R companion to applied regression, third edition.

CA: Sage Publishing, Thousand Oaks, 608pp.

福谷麻方.2018.タイリクモモンガの巣箱間距離と性的二型について.帯広畜産大学博士前期課程学位論文.30 pp.

Garroway, C. J., Bowman, J. and Wilson, P. J. 2013. Complex social structure of southern flying squirrels is related to spatial proximity but not kinship. Behavioral Ecology and Sociobiology 67: 113–122.

Gilbert, C., Mccafferty, D., Maho, Y. Le, Martrette, J. and Giroud, S. 2010. One for all and all for one : the energetic benefits of huddling in endotherms.

Biological Reviews 85: 545–569.

Gonzalez-Bernardo, E., Bombieri, G., Delgado, M. M. and Penteriani, V. 2020. The role of spring temperatures in the den exit of female brown bears with cubs in southwestern Europe. Urusus 31. DOI: 10.2192/URSUS-D-19-00015.1.

Groó, Z., Szenczi, P., Bánszegi, O., Nagy, Z. and Altbäcker, V. 2018. The influence of familiarity and temperature on the huddling behavior of two mouse species with contrasting social systems. Behavioural Processes 151: 67–72. Grüebler, M. U., Widmer, S., Korner-Nievergelt, F. and Naef-Daenzer, B. 2014. Temperature characteristics of winter roost-sites for birds and mammals:

treecavitiesandanthropogenicalternatives.InternationalJournalof

Biometeorology 58: 629–637.

Hanski, I. K. and Selonen, V. 2009. Female-biased natal dispersal in the Siberian flying squirrel. Behavioral Ecology 20: 60–67.

Hasan, S., Al-Razi, H., Ahmed, T., Naher, H. and Muzaffar, S. B. 2021. Observation of infanticide in the particolored flying squirrel (Hylopetes alboniger) from a forest in northeastern Bangladesh. Mammal sturdy 46: 265-268.

Hasselgren, M. and Norén, K. 2019. Inbreeding in natural mammal populations: historical perspectives and future challenges. Mammal Review 49: 369–383. Hayes, J. P., Speakman, J. R. and Racey, P. A. 1992. The contributions of local heating and reducing exposed surface area to the energetic benefits of huddlingbyshort-tailedfieldvoles(Microtusagrestis).Physiological

Zoology 65: 742–762.

Here, J. F. and Murie, J. O. 2007. Ecology, kinship, and ground squirrel sociality: insights from comparative analyses. In(J. O. Wolff and P. W. Sherman, eds.) Rodent Societies An Ecological and Evolutionary Perspective, pp. 345–355. The University of Chicago Press, Chicago and London.

Holekamp, K. E. 1984. Natal dispersal in Belding’s ground squirrels (Spermophilus beldingi). Behavioral Ecology and Sociobiology 16: 21–30.

Hoogland, J. L. 1999. Philipatry, dispersal, and social organization of Gunnison's prairie dogs. Journal of Mammalogy 80: 243–251.

Hoogland J. L., Hale, S. L. and Sui, Y. D. 2013. Individual variation in vigilance among white-tailed prairie dogs (Cynomys lucurus). The Southeastern Naturalist 58: 379–285.

石井信夫.2005.ニホンモモンガ Pteromys momonga Temmink, 1844.日本の

哺乳類(阿部永,編)東海大学出版会,p123.

Jo Manning, C., Dewsbury, D. A., Wakeland, E. K. and Potts, W. K. 1995. Communal nesting and communal nursing in house mice, Mus musculus domesticus. Animal Behaviour 50: 741–751.

Kanyile, S. N., Pillay, N. and Scharadin, C. 2021. Bacheor groups form due to individual choies or environmental disrupters in African striped mice. Animal Behaviour 182: 135–143.

川道武男.2015.ムササビ空飛ぶ座ぶとん.築地書館,東京.251pp.

菊池隼人・押田龍夫.2022.フィールド・ノート No.11.地上でハンノキ Alunus japonica の花序を採食するタイリクモモンガ Pteromys volans. 哺乳類科学 62:2.

Kishimoto, R. and Kawamichi, T. 1996. Territorirality and monogamous pairs in a solitary ungulate, the Japanese serow, Capricornis crispus. Animal Behaviour 52: 673–682.

小林朋道.2012.鳥取県芦津渓谷のニホンモモンガ Pteromys momongaの生

態学的諸知見.自然環境科学研究 25: 15–22.

小林朋道.2013.ニホンモモンガ Pteromys momonga 成獣による巣内同居の誘発要因の分析.鳥取県立博物館研究報告 50:55–59.

Koprowski, J. L. 1996. Natal philopatry, communal nesting, and kinship in fox squirrels and gray squirrels. Journal of Mammalogy 77: 1006–1016.

Koprowski, J. L. 1998. Conflict between the sexes: A review of social and mating systems of the tree squirrels. Ecology and Evolutionary Biology of Tree Squirrels, Special Publication, Virginia Museum of Natural History 6: 33–41.

Krause, J. and Ruxton, G. D. 2002. Living in groups. Oxford Series in Ecology and Evolution, New York, 210 pp.

Krauze-Gryz, D. and Gryz, J. 2015. A review of the diet of the red squirrel (Sciurus vulgaris) in different types of habitats. In (C. M. Shuttleworth, P. Lurz, M. W. Hayward, eds.) Red squirrels: Ecology, Conservation & Management in Europe, pp. 39–50. European Squirrel Initiative, Suffolk.

Lacey, E. A. and Sherman, P. W. 2007. The ecology of sociality in rodents. In(J. O. Wolff and P. W. Sherman, eds.) Rodent Societies An Ecological and Evolutionary Perspective, pp. 243–254. The University of Chicago Press, Chicago and London.

Latham, N. and Mason, G. 2004. From house mouse to mouse house: The behavioural biology of free-living Mus musculus and its implications in the laboratory. Applied Animal Behaviour Science 86: 261–289.

Lane, J. E., Boutin, S., Speakman, J. R. and Humphries. 2010. Energetic costs of male reproduction in a scramble competition mating system. Journal of Animal Ecology 79: 27-34.

Layne, J. N. and Raymond, M. A. V. 1994. Communal nesting of southern flying squirrels in Florida. Journal of Mammalogy 75: 110–120.

Lent, P. C. 1988. Ovibos moschatus. Mammalian Species 302: 1–9. Manning, J. C. Dewsbury, D. A., Wakeland, E. K. and Potts, W. K. 1995.

Communal nesting and communal nursing in house mice Mus musculus domesticus. Animal Behaviour 50: 741–751.

Manuel, B. and Lee, D, C. 2007. Comparative social organization and life history of Rattus and Mus. In (J. O. Wolff and P. W. Sherman, eds.) Rodent Societies An Ecological and Evolutionary Perspective, pp. 380–392. The University of Chicago Press, Chicago and London.

Marel, A., Waterman, J. M. and López-Darias, M. 2020. Social organization in a North African ground squirrel. Journal of Mammalogy 101: 670–683.

Markham, A. C., Gesquiere, L. R., Alberts, S. C. and Altmann, J. 2015. Optimal group size in a highly social mammal. Proceedings of the National Academy of Sciences of the United States of America 112: 14882–14887.

Marmet, J., Pisanu, B., Chapuis, J., Jacob, G. and Baudry, E. 2012. Factors affecting male and female reproductive success in a chipmunk (Tamias sibricus) with

a scramble competition mating system. Behavior Ecology and Sociobiology 66: 1149–1457.

Mayer, M., Künzel, F., Zedrosser, A. and Rosell, F. 2017. The 7-year itch: non- adaptive mate change in the Eurasian beaver. Behavioral Ecology and Sociobiology 71: 1–9.

Melzheimer, J. et al. 2021. Communication hubs of an asocial cat are the source of a human-carnivore conflict and key to its solution. Proceedings of the National Academy of Sciences of the United States of America 117: 33325– 33333.

Mota-Rojas, D., Titto, C. C., Orihuela, A., Martinez-Burnes, J. Gómez-Prado, J., Torres-Bernal, F., Flores-Padilla, K. Fuente, C. and Wang, D. 2021. Physiological and Behavioral Mechanisms of Thermoregulation in Mammals. Animals 11. DOI: 10.3390/ani11061733.

Mullens, B. A., Lii, K. S., Mao, Y., Meyer, J. A., Peterson, N. G. and Szijj, C. E.

2006. Behavioural responses of dairy cattle to the stable fly, Stomoxys

calcitrans, in an open field environment. Medical and Veterinary Entomology 20: 122–137.

Murrant, M. N., Bowman, J. and Wilson, P. J. 2014. A test of non-kin social foraging in the southern flying squirrel (Glaucomys volans). Biological Journal of the Linnean Society 113: 1126–1135.

Nakama, S. and Yanagawa, H. 2009. Characteristics of tree cavities used by

Pteromys volans orii in winter. Mammal Study 34: 161–164.

南部 朗・柳川 久.2010.エゾモモンガの冬季の採食物とその選択性.森林野生動物研究会誌 35: 22–25.

西尾博之.2016.えぞももんがのきもち.北海道新聞社,札幌.40pp.小畑良洋.2018.木材の熱物性と接触温冷感.材料 67: 551–556.

Oshida, T. 2015a. Pteromys volans Linneus, 1758. In (S. D. Ohdachi, Y. Ishibayashi, M. A. Iwasa, D. Fukui and T. Saitoh, eds.) The Wild Mammals of Japan, Second edition, pp. 204–205. Shiukadoh Book Sellers and the Mammal Society of Japan, Kyoto.

Oshida, T. 2015b. Pteromys momonga Temminck, 1844. In (S. D. Ohdachi, Y. Ishibayashi, M. A. Iwasa, D. Fukui and T. Saitoh, eds.) The Wild Mammals of Japan, Second edition, pp. 202–203. Shiukadoh Book Sellers and the Mammal Society of Japan, Kyoto.

Oshida, T., Abramov, A., Yanagawa, H. and Masuda, R. 2005. Phylogeography of the Russian flying squirrel (Pteromys volans): implication of refugia theory in arboreal small mammal of Eurasia. Molecular Ecology 14: 1191–1196.

Paclík, M and Weidinger, K. 2007. Microclimate of tree cavities during winter nights-implications for roost site selection in birds. International Journal of Biometeorology 51: 287–293.

Patriquin, K. J., Leonald, M. L., Broders, H. G. and Garroway, C. J. 2010. Do social networks of female northern long-eared bats vary with reproductive period and age?. Behavioral Ecology and Sociobioligy 64: 899–913.

Ramos-Lara, N. and Koprowski, J. L. 2012. Communal nesting behavior in Mearns’s squirrels (Tamiasciurus mearnsi). The Southwestern Naturalist 57: 195–198.

Randall, J. A., Rogovin, K., Parker, P. G. and Eimes, J. A. 2005. Flexible social structure of a desert rodent, Rhombomys opimus: philopatry, kinship, and ecological constraints. Behavioral Ecology 16: 961–973.

Randall, J. A. 2007. Environmental constraints and the evolution of sociality in semifossorial desert rodents. In (J. O. Wolff and P. W. Sherman, eds.) Rodent Societies An Ecological and Evolutionary Perspective, pp. 368–379. The University of Chicago Press, Chicago and London.

Rauber, R. and Manser, M. B. 2017. Discrete call types referring to predation risk enhance the efficiency of the meerkat sentinel system. Scientific Reports 7: 1–9.

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R- project.org/.

Reynolds, R. J., Michael, F. L. and Pagels, J. F. 2009. Communal nesting and

reproduction of the Southern flying squirrel in Montane Virginia. Northeastern Naturalist 16: 563–576.

Rivrud, I. M., Bischof, R., Meisingset, E. L., Zimmermann, B.Loe, L. E. and Mysterud, A. 2016. Leave before it's too late: anthropogenic and environmental triggers of autmn migration in a hunted unglate population. Ecology 97: 1058–1068.

Ruczyñski, I and Bartoñ, K. A. 2020.Seasonal changes and the influence of tree

species and ambient temperature on the fission-fusion dynamics of tree- roosting bats. Bahavioral Ecology and Sociobiology 74. DOI: 10.1007/s00265-020-02840-1.

Ruf, T. and Bieber, C. 2020. Use of social thermoregulation fluctuates with mast seeding and reproduction in a pulsed resource consumer. Oecologia 192: 919–928.

Russo, D., Cistrone, L., Budinski, I. Console, G., Corte, D. M., Milighetti, C., Salvo,

I. D., Nardone, V., Bringham, M. R. and Ancillotto, L. 2017. Sociality influences thermoregulation and roost switching in a forest bat using ephemeral roosts: 5310–5321.

Schoepf, I. and Schradin, C. 2012. Better off alone! Reproductive competition and ecological constraints determine sociality in the African striped mouse

(Rhabdomys pumilio). Journal of Animal Ecology 81: 649–656.

Schradin, C. 2013. Intraspecific variation in social organization by genetic variation, developmental plasticity, social flexibility or entirely extrinsic factors. Philosophical Transactions of the Royal Society B: Biological Sciences 368: 20120346.

Schradin, C., Hayes, L. D., Pillay, N. and Bertelsmeier, C. 2018. The evolution of intraspecific variation in social organization. Ethology 124: 527–536.

Selonen, V., Hanski, I. K. and Wistbacka, R. 2014. Communal nesting is explained by subsequent mating rather than kinship or thermoregulation in the Siberian flying squirrel. Behavioral Ecology and Sociobiology 68: 971–980.

Selonen, V. and Mäkeläinen. 2017. Ecology and protection of a flagship species, the Siberian flying squirrel. Hystrix, the Italian Journal of Mammalogy 28: 134–146.

Selonen, V., Painter, N. J. Rantara, S. and Hanski, K. I. 2013. Mating system and reproductive success in the Siberian flying squirrel. Journal of Mammalogy 94: 1266–1273.

Selonen, V. Wistbacka, R. and Santangeli, A. 2016. Sex-specific patterns in body mass and mating system in the Siberan flying squirrel. BMC Zoology 1. DOI: 10.1186/s40850-016-0009-3.

Sheppard, C. E. et al. 2018. Intragroup competition predicts individual foraging specialisation in a group-living mammal. Ecology Letters 21: 665–673.

嶌本樹・古川竜司・鈴木圭・柳川久.2014.糞を用いたタイリクモモンガ Pteromys volans の生息確認方法.哺乳類科学 54: 201–206.

Shimamoto, P., Suzuki, KK., Hamada, M., Furukawa R. Matsui, M. and Yanagawa,

H. 2018. Fecal progesterone metabolites in postpartum Siberian flying squirrels. Journal of Zoo and Wildlife Medicine 49: 237–241.

Simmonds, E. G., Shaldon, B. C., Coulson, T. and Cole, E. F. 2017. Incubation behavior adjustments, driven by ambient temperature variation, improve synchrony between hatch dates and caterpillar peak in a wild bird population. Ecology and Evolution 7: 9415–9425.

Siracusa, E. et al. 2017. Familiarity with neighbours affects intrusion risk in

territorial red squirrels. Animal Behaviour 133: 11–20.

Stapp, P., Pekins, P. and Mautz, W. W. 1990. Winter energy expenditure and the distribution of southern flying squirrels. Canadian Journal of Zoology 69: 2548–2555.

Sugita, N. 2016. Homosexual fellatio: erect penis licking between male Bonin flyingfoxesPteropuspselaphon.PlosOne. DOI:10.1371/journal.pone.0166024.

Suzuki, K. K. and Ando, M. 2017. Seasonal changes in activity patterns of Japanese flying squirrel Pteromys momonga. Behavioural Processes 143: 13–16.

Suzuki, K. K., Shimamoto, T., Furukawa, R. G. and Yanagawa, H. 2016. Diurnal

activity of juvenile Russian flying squirrels recorded by camera trapping. Lutra 59: 1115–120.

竹口琴葉・杉本美紀・藤井奈月・柚原和敏・柳川久.2017.動物園と大学

の連携による解説板設置効果の検証.帯広畜産大学学術研究報告 38:

34–52.

Thorington, R. W., Koprowski, J. L., Steele, M. A. and Whatton, J. F. 2012. Squirrels of the World. Johns Hopkins University Press, Baltimore, 459pp.

Thorington, K. K., Metheny, J. D., Kalcounis-Rueppell, M. C. and Weigl, P. D. 2010.Genetic relatedness in winter populations of seasonally gregarious southern flying squirrels, Glaucomys volans. Journal of Mammalogy 91: 897– 904.

Viltala, J., Korpimäki, E., Palokangas, P. and Koivula, M. 1995. Attraction of kestrels to vole scent marks visible in ultraviolet light. Nature 373: 425–427.

Viñals, A., Bertolino, S. and Gil-delgado, J. A. 2017. Communal nesting in the garden dormouse (Eliomys quercinus). Behavioural Processes 135: 25–28.

Vonhof, M. J., Whitehead, B. and Fenton, B. M. 2004. Analysis of Spix's disc- winged bat association patterns and roosting home ranges reveal a novel social structure among bats. Animal Behaviour 68: 507–521.

Wells-Gosling, N. 1985. Flying squirrels gliders in the dark. Smithsonian Institution Press, Washington DC, 128pp.

Whitehead, H. 2009. SOCPROG programs: analysing animal social structures.

Behavioral Ecology and Sociobiology 63: 765–778.

ウィルソン, E. O.1999.第 2 章社会生物学の基本概念(坂上昭一,訳).社会生物学(伊藤嘉昭,監訳)〔合本版〕,pp. 10–51. 新思索社,東京.

Williams, C. T., Gorrell, J. C., Lane, J. E., McAdam, A. G., Humphries, M. M. and Boutin, S. 2013. Communal nesting in an “asocial” mammal: social thermoregulation among spatially dispersed kin. Behavioral Ecology and Sociobiology 67: 757–763.

Winterrowd, M. F. , Gergits, W. F., Laves, K. S. and Weigl, P. D. 2005. Relatedness within nest groups of the southern flying squirrel using microsatellite and discriminant function analyses. Journal of Mammalogy 86: 841–846.

Woodroffe, R. and Macdonald, D. W. 2000. Helpers provide no detectable

benefits in the European badger (Meles meles). Journal of Zoology 250: 113– 119.

Wright, H. W. Y. 2006. Paternal den attendance is the best predictor of offspring survival in the socially monogamous bat-eared fox. Animal Behaviour 71: 503–510.

山口裕司・柳川久.1995.野外におけるエゾモモンガ Pteromys volans orii

の日周期活動.哺乳類科学 34: 139–149.

柳川久・押田龍夫・谷口明里・竹田津こるり.1996.福井県下で保護されたニホンモモンガに関する知見.森林野生動物研究会誌 22: 8–16.

柳川久.1994.ラジオテレメトリーを用いたエゾモモンガの生態研究.平成 5 年度帯広畜産大学後援会報告 22: 47–50.

柳川久.1994b.小鳥用巣箱を用いたエゾモモンガの野外研究.森林保護

241:20–22.

柳川久.1999.エゾモモンガの生態(ビデオ発表)―北海道十勝平野における一年間の記録―.哺乳類科学 39: 181–183.

参考文献をもっと見る