リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「MAML3は低酸素状態下で形態形成シグナルを介して、胆嚢がんの悪性形質誘導に関与する」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

MAML3は低酸素状態下で形態形成シグナルを介して、胆嚢がんの悪性形質誘導に関与する

那, 琳 NA, LIN ナ, リン 九州大学

2023.09.25

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

MAML3 Contributes to Induction of Malignant
Phenotype of Gallbladder Cancer Through
Morphogenesis Signalling Under Hypoxia
那, 琳

https://hdl.handle.net/2324/7157302
出版情報:Kyushu University, 2023, 博士(医学), 課程博士
バージョン:
権利関係:Creative Commons Attribution-NonCommercial-NoDerivatives International

氏 名:

那 琳(NA LIN)

論文名:

MAML3 Contributes to Induction of Malignant Phenotype of Gallbladder Cancer
Through Morphogenesis Signalling Under Hypoxia
(MAML3は低酸素状態下で形態形成シグナルを介して、胆嚢がんの悪性形質誘導に関
与する)

区 分:



論 文 内 容 の 要 旨

 Hedgehog(HH)シグナルが胆嚢癌の治療標的であること、また、Mastermind-like3(MAML3)が、HH
シグナルの起動蛋白であるSmoothened(SMO)の転写を癌微小環境の一つである低酸素環境下で亢進す
ることを、当研究室では報告してきた。一方で、MAML3はNOTCHシグナルの転写共役因子として知られ
る。
 本研究では、MAML3がNOTCHシグナルを介して、低酸素環境における胆嚢癌の悪性形質誘導に関与し
ているかを解析し、MAML3が形態形成シグナルであるHH/NOTCH両シグナルを包括的に制御する、胆嚢癌
の新規治療標的となり得るかを検証した。3種類の胆嚢癌細胞株(NOZ, TYGBK1, TGBC2TKB)を標的細
胞とし、胆嚢癌の外科的切除標本(58症例)を免疫染色に用いた。低酸素環境はマルチガス培養器を
使用し、1%O2、5%CO2、94%N2環境とした。遺伝子抑制はRNA干渉法で行った。胆嚢癌においてもMAML3
発現は通常酸素環境と比較し、低酸素環境で亢進した。MAML3は胆嚢癌においてHHシグナルおよび
NOTCHシグナルの活性化に寄与した。MAML3は低酸素環境において、NOTCHシグナル活性化を介して、増
殖、遊走、浸潤に関与することが示唆された。切除標本を用いたMAML3の免疫染色の解析では、MAML3
発現はリンパ管浸潤、リンパ節転移、ステージと正の相関をし、予後不良因子であることが示唆され
た。
 以上より、MAML3は低酸素環境下でHH/NOTCH両形態形成シグナル活性化を介して胆嚢癌の悪性形質誘
導に関与しており、MAML3は胆嚢癌において包括的に形態形成シグナルを制御する新規治療標的となる
ことが示唆された。

この論文で使われている画像

参考文献

1 Wolpin B, Mayer R: A step forward in the treatment of advanced

biliary tract cancer. New England Journal of Medicine 362(14):

1335-1337, 2019. DOI: 10.1056/NEJMe1001183

2 Azizi A, Lamarca A, McNamara M, Valle J: Chemotherapy for

advanced gallbladder cancer (GBC): A systematic review and

meta-analysis. Critical Reviews in Oncology/Hematology 163:

103328, 2023. DOI: 10.1016/j.critrevonc.2021.103328

3 Misra S, Chaturvedi A, Misra N, Sharma I: Carcinoma of the

gallbladder. The Lancet Oncology 4(3): 167-176, 2023. DOI:

10.1016/S1470-2045(03)01021-0

4 Hindson J: Gemcitabine and cisplatin plus immunotherapy in

advanced biliary tract cancer: a phase II study. Nature Reviews

Gastroenterology & Hepatology 19(5): 280-280, 2022. DOI:

10.1038/s41575-022-00616-8

5 Graeber T, Osmanian C, Jacks T, Housman D, Koch C, Lowe S,

Giaccia A: Hypoxia-mediated selection of cells with diminished

apoptotic potential in solid tumours. Nature 379(6560): 88-91,

2021. DOI: 10.1038/379088a0

6 Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, Shu Y: Role of

hypoxia in cancer therapy by regulating the tumor

microenvironment. Molecular Cancer 18(1): 157, 2022. DOI:

10.1186/s12943-019-1089-9

7 Guo S, Liu M, Gonzalez-Perez R: Role of Notch and its

oncogenic signaling crosstalk in breast cancer. Biochimica et

Biophysica Acta (BBA) - Reviews on Cancer 1815(2): 197-213,

2021. DOI: 10.1016/j.bbcan.2010.12.002

8 Nwabo K, Takam K, Tagne S, Vecchio L, Seke E, Muller J,

Bassi G, Lukong E, Kumar G, Mbo A, Krampera M:

Developmental pathways associated with cancer metastasis:

Notch, Wnt, and Hedgehog. Cancer Biology & Medicine 14(2):

109, 2022. DOI: 10.20892/j.issn.2095-3941.2016.0032

9 Hill R, Marie-Egyptienne D, Hedley D: Cancer stem cells,

hypoxia and metastasis. Seminars in Radiation Oncology 19(2):

106-111, 2021. DOI: 10.1016/j.semradonc.2008.12.002

2920

10 Hidalgo M: New insights into pancreatic cancer biology. Annals

of Oncology 23: x135-x138, 2020. DOI: 10.1093/annonc/mds313

11 Koch U, Radtke F: Notch and cancer: a double-edged sword.

Cellular and Molecular Life Sciences 64(21): 2746-2762, 2019.

DOI: 10.1007/s00018-007-7164-1

12 Aster J, Pear W, Blacklow S: The varied roles of notch in cancer.

Annual Review of Pathology: Mechanisms of Disease 12(1):

245-275, 2022. DOI: 10.1146/annurev-pathol-052016-100127

13 Allenspach E, Maillard I, Aster J, Pear W: Notch signaling in

cancer. Cancer Biology & Therapy 1(5): 466-476, 2016. DOI:

10.4161/cbt.1.5.159

14 Villanueva A, Alsinet C, Yanger K, Hoshida Y, Zong Y, Toffanin

S, Rodriguez-Carunchio L, Solé M, Thung S, Stanger B, Llovet J:

Notch signaling is activated in human hepatocellular carcinoma

and induces tumor formation in mice. Gastroenterology 143(6):

1660-1669.e7, 2023. DOI: 10.1053/j.gastro.2012.09.002

15 Kopan R, Ilagan M: The canonical notch signaling pathway:

unfolding the activation mechanism. Cell 137(2): 216-233, 2023.

DOI: 10.1016/j.cell.2009.03.045

16 Oka C, Nakano T, Wakeham A, Pompa J, Mori C, Sakai T,

Okazaki S, Kawaichi M, Shiota K, Mak T, Honjo T: Disruption

of the mouse RBP-J kappa gene results in early embryonic

death. Development 121(10): 3291-3301, 2023. DOI:

10.1242/dev.121.10.3291

17 McElhinny A, Li J, Wu L: Mastermind-like transcriptional coactivators: emerging roles in regulating cross talk among

multiple signaling pathways. Oncogene 27(38): 5138-5147,

2022. DOI: 10.1038/onc.2008.228

18 Artavanis-Tsakonas S, Rand M, Lake R: Notch signaling: cell

fate control and signal integration in development. Science

284(5415): 770-776, 2023. DOI: 10.1126/science.284.5415.770

19 Dai G, Deng S, Guo W, Yu L, Yang J, Zhou S, Gao T: Notch

pathway inhibition using DAPT, a γ-secretase inhibitor (GSI),

enhances the antitumor effect of cisplatin in resistant

osteosarcoma. Molecular Carcinogenesis 58(1): 3-18, 2020.

DOI: 10.1002/mc.22873

20 Grottkau B, Chen X, Friedrich C, Yang X, Jing W, Wu Y, Cai X,

Liu Y, Huang Y, Lin Y: DAPT Enhances the Apoptosis of

Human Tongue Carcinoma Cells. International Journal of Oral

Science 1(2): 81-89, 2012. DOI: 10.4248/ijos.08025

21 Li L, Peng Y, Liu Y, Wang L, Wu X: Gastric cancer cell growth

and epithelial-mesenchymal transition are inhibited by γsecretase inhibitor DAPT. Oncology Letters 7(6): 2160-2164,

2018. DOI: 10.3892/ol.2014.1980

22 Onishi H, Yamasaki A, Kawamoto M, Imaizumi A, Katano M:

Hypoxia but not normoxia promotes Smoothened transcription

through upregulation of RBPJ and Mastermind-like 3 in

pancreatic cancer. Cancer Letters 371(2): 143-150, 2018. DOI:

10.1016/j.canlet.2015.11.012

23 Yamasaki A, Onishi H, Imaizumi A, Kawamoto M, Fujimura A,

Oyama Y, Katano M: Protein-bound polysaccharide-K inhibits

hedgehog signaling through down-regulation of MAML3 and RBPJ

transcription under hypoxia, suppressing the malignant phenotype

in pancreatic cancer. Anticancer Res 36(8): 3945-3952, 2016.

24 Matsushita S, Onishi H, Nakano K, Nagamatsu I, Imaizumi A,

Hattori M, Oda Y, Tanaka M, Katano M: Hedgehog signaling

pathway is a potential therapeutic target for gallbladder cancer.

Cancer Science 105(3): 272-280, 2021. DOI: 10.1111/cas.12354

25 Fulawka L, Blaszczyk J, Tabakov M, Halon A: Assessment of

Ki-67 proliferation index with deep learning in DCIS (ductal

Na et al: MAML3-induced GBC Malignancy

26

27

28

29

30

31

32

33

34

35

36

37

38

39

carcinoma in situ). Scientific Reports 12(1): 3166, 2022. DOI:

10.1038/s41598-022-06555-3

Grassi E, Pantazopoulou V, Pietras A: Hypoxia-induced release,

nuclear translocation, and signaling activity of a DLK1

intracellular fragment in glioma. Oncogene 39(20): 4028-4044,

2021. DOI: 10.1038/s41388-020-1273-9

Lei J, Ma J, Ma Q, Li X, Liu H, Xu Q, Duan W, Sun Q, Xu J,

Wu Z, Wu E: Hedgehog signaling regulates hypoxia induced

epithelial to mesenchymal transition and invasion in pancreatic

cancer cells via a ligand-independent manner. Mol Cancer 12:

66, 2013. DOI: 10.1186/1476-4598-12-66

Thiery J, Acloque H, Huang R, Nieto M: Epithelialmesenchymal transitions in development and disease. Cell

139(5): 871-890, 2021. DOI: 10.1016/j.cell.2009.11.007

Cano C, Motoo Y, Iovanna J: Epithelial-to-mesenchymal

transition in pancreatic adenocarcinoma. The Scientific World

JOURNAL 10: 1947-1957, 2016. DOI: 10.1100/tsw.2010.183

Javle M, Zhao H, Abou-alfa G: Systemic therapy for gallbladder

cancer. Chinese Clinical Oncology 8(4): 44-44, 2019. DOI:

10.21037/cco.2019.08.14

Ichimiya S, Onishi H, Nagao S, Koga S, Sakihama K, Nakayama

K, Fujimura A, Oyama Y, Imaizumi A, Oda Y, Nakamura M:

GLI2 but not GLI1/GLI3 plays a central role in the induction of

malignant phenotype of gallbladder cancer. Oncology Reports

45(3): 997-1010, 2021. DOI: 10.3892/or.2021.7947

Rapisarda A, Melillo G: Overcoming disappointing results with

antiangiogenic therapy by targeting hypoxia. Nature Reviews

Clinical Oncology 9(7): 378-390, 2021. DOI: 10.1038/

nrclinonc.2012.64

Maftouh M, Avan A, Sciarrillo R, Granchi C, Leon L, Rani R,

Funel N, Smid K, Honeywell R, Boggi U, Minutolo F, Peters G,

Giovannetti E: Synergistic interaction of novel lactate

dehydrogenase inhibitors with gemcitabine against pancreatic

cancer cells in hypoxia. British Journal of Cancer 110(1): 172182, 2021. DOI: 10.1038/bjc.2013.681

Didiasova M, Schaefer L, Wygrecka M: Targeting GLI

transcription factors in cancer. Molecules 23(5): 1003, 2019.

DOI: 10.3390/molecules23051003

Köchert K, Ullrich K, Kreher S, Aster JC, Kitagawa M, Jöhrens

K, Anagnostopoulos I, Jundt F, Lamprecht B, Zimber-Strobl U,

Stein H, Janz M, Dörken B, Mathas S: High-level expression of

Mastermind-like 2 contributes to aberrant activation of the

NOTCH signaling pathway in human lymphomas. Oncogene

30(15): 1831-1840, 2011. DOI: 10.1038/onc.2010.544

Chang W, Lai A: Aberrations in Notch-Hedgehog signalling

reveal cancer stem cells harbouring conserved oncogenic

properties associated with hypoxia and immunoevasion. British

Journal of Cancer 121(8): 666-678, 2021. DOI: 10.1038/s41416019-0572-9

Marignol L, Rivera-Figueroa K, Lynch T, Hollywood D:

Hypoxia, notch signalling, and prostate cancer. Nat Rev Urol

10(7): 405-413, 2013. DOI: 10.1038/nrurol.2013.110

Patrad E, Niapour A, Farassati F, Amani M: Combination

treatment of all-trans retinoic acid (ATRA) and γ-secretase

inhibitor (DAPT) cause growth inhibition and apoptosis

induction in the human gastric cancer cell line. Cytotechnology

70(2): 865-877, 2018. DOI: 10.1007/s10616-018-0199-3

Qiu K, Ma C, Lu L, Wang J, Chen B, Mao H, Wang Y, Wang H:

DAPT suppresses proliferation and migration of hepatocellular

carcinoma by regulating the extracellular matrix and inhibiting

40

41

42

43

44

45

46

47

48

49

50

51

52

53

the Hes1/PTEN/AKT/mTOR signaling pathway. Journal of

Gastrointestinal Oncology 12(3): 1101-1116, 2021. DOI:

10.21037/jgo-21-235

Abstracts from USCAP 2020: Pancreas, gallbladder, ampulla,

and extra-hepatic biliary tree (1739-1801). Mod Pathol 33: 18081866, 2020.

USCAP: Abstracts: pancreas, gallbladder, ampulla, and extrahepatic biliary tree. Mod Pathol 35(Suppl 2): 1317-1354, 2022.

DOI: 10.1038/s41379-022-01046-2

Bensken W, Ho V, Pieracci F: Basic introduction to statistics in

medicine, Part 2: Comparing data. Surgical Infections 22(6):

597-603, 2023. DOI: 10.1089/sur.2020.430

Kawamoto M, Onishi H, Ozono K, Yamasaki A, Imaizumi A,

Kamakura S, Nakano K, Oda Y, Sumimoto H, Nakamura M:

Tropomyosin-related kinase B mediated signaling contributes to the

induction of malignant phenotype of gallbladder cancer. Oncotarget

8(22): 36211-36224, 2022. DOI: 10.18632/oncotarget.16063

Bhandari V, Hoey C, Liu L, Lalonde E, Ray J, Livingstone J,

Lesurf R, Shiah Y, Vujcic T, Huang X, Espiritu S, Heisler L,

Yousif F, Huang V, Yamaguchi T, Yao C, Sabelnykova V, Fraser

M, Chua M, Van der Kwast T, Liu S, Boutros P, Bristow R:

Molecular landmarks of tumor hypoxia across cancer types.

Nature Genetics 51(2): 308-318, 2022. DOI: 10.1038/s41588018-0318-2

Gilkes D, Semenza G: Role of hypoxia-inducible factors in

breast cancer metastasis. Future Oncology 9(11): 1623-1636,

2022. DOI: 10.2217/fon.13.92

Haider S, McIntyre A, Van Stiphout R, Winchester L, Wigfield

S, Harris A, Buffa F: Genomic alterations underlie a pan-cancer

metabolic shift associated with tumour hypoxia. Genome

Biology 17(1): 140, 2018. DOI: 10.1186/s13059-016-0999-8

Zhang M, Cui J, Lee D, Yuen V, Chiu D, Goh C, Cheu J, Tse A,

Bao M, Wong B, Chen C, Wong C, Ng I, Wong C: Hypoxiainduced macropinocytosis represents a metabolic route for liver

cancer. Nature Communications 13(1): 954, 2022. DOI:

10.1038/s41467-022-28618-9

Zhuravleva E, O’Rourke C, Andersen J: Mutational signatures

and processes in hepatobiliary cancers. Nature Reviews

Gastroenterology & Hepatology 19(6): 367-382, 2022. DOI:

10.1038/s41575-022-00587-w

Briscoe J, Thérond PP: The mechanisms of Hedgehog signalling

and its roles in development and disease. Nat Rev Mol Cell Biol

14(7): 416-429, 2013. DOI: 10.1038/nrm3598

Kikuchi I, Takahashi-kanemitsu A, Sakiyama N, Tang C, Tang

P, Noda S, Nakao K, Kassai H, Sato T, Aiba A, Hatakeyama M:

Dephosphorylated parafibromin is a transcriptional coactivator

of the Wnt/Hedgehog/Notch pathways. Nature Communications

7(1): 12887, 2023. DOI: 10.1038/ncomms12887

Huang S, He J, Zhang X, Bian Y, Yang L, Xie G, Zhang K, Tang

W, Stelter A, Wang Q, Zhang H, Xie J: Activation of the hedgehog

pathway in human hepatocellular carcinomas. Carcinogenesis

27(7): 1334-1340, 2021. DOI: 10.1093/carcin/bgi378

Yeh T, Wu C, Hsu K, Liao W, Yang M, Li A, Wang A, Kuo M,

Chi C: The activated Notch1 signal pathway is associated with

gastric cancer progression through cyclooxygenase-2. Cancer

Research 69(12): 5039-5048, 2022. DOI: 10.1158/00085472.CAN-08-4021

Onishi H, Ichimiya S, Yanai K, Umebayashi M, Nakamura K,

Yamasaki A, Imaizumi A, Nagai S, Murahashi M, Ogata H,

Morisaki T: RBPJ and MAML3: Potential therapeutic targets for

2921

ANTICANCER RESEARCH 43: 2909-2922 (2023)

54

55

56

57

58

59

60

61

62

63

64

65

small cell lung cancer. Anticancer Research 38(8): 4543-4547,

2022. DOI: 10.21873/anticanres.12758

Okusaka T, Nakachi K, Fukutomi A, Mizuno N, Ohkawa S,

Funakoshi A, Nagino M, Kondo S, Nagaoka S, Funai J, Koshiji

M, Nambu Y, Furuse J, Miyazaki M, Nimura Y: Gemcitabine

alone or in combination with cisplatin in patients with biliary tract

cancer: a comparative multicentre study in Japan. British Journal

of Cancer 103(4): 469-474, 2021. DOI: 10.1038/sj.bjc.6605779

Nabhan C, Gajria D, Krett NL, Gandhi V, Ghias K, Rosen ST:

Caspase activation is required for gemcitabine activity in

multiple myeloma cell lines. Mol Cancer Ther 1(13): 1221-1227,

2002.

Knox J, Hedley D, Oza A, Feld R, Siu L, Chen E, Nematollahi

M, Pond G, Zhang J, Moore M: Combining gemcitabine and

capecitabine in patients with advanced biliary cancer: a phase II

trial. Journal of Clinical Oncology 23(10): 2332-2338, 2022.

DOI: 10.1200/JCO.2005.51.008

Yokoi K, Fidler I: Hypoxia increases resistance of human

pancreatic cancer cells to apoptosis induced by gemcitabine.

Clinical Cancer Research 10(7): 2299-2306, 2023. DOI:

10.1158/1078-0432.ccr-03-0488

Zhang X, Galardi E, Duquette M, Delic M, Lawler J, Parangi S:

Antiangiogenic treatment with the three thrombospondin-1 type

1 repeats recombinant protein in an orthotopic human pancreatic

cancer model. Clinical Cancer Research 11(6): 2337-2344, 2022.

DOI: 10.1158/1078-0432.CCR-04-1900

Wouters A, Pauwels B, Lambrechts H, Pattyn G, Ides J, Baay

M, Meijnders P, Peeters M, Vermorken J, Lardon F: Retention

of the in vitro radiosensitizing potential of gemcitabine under

anoxic conditions, in p53 wild-type and p53-deficient non-smallcell lung carcinoma cells. International Journal of Radiation

Oncology*Biology*Physics 80(2): 558-566, 2023. DOI:

10.1016/j.ijrobp.2010.12.051

Lam W, Bussom S, Cheng Y: Effect of hypoxia on the

expression of phosphoglycerate kinase and antitumor activity of

troxacitabine and gemcitabine in non-small cell lung carcinoma.

Molecular Cancer Therapeutics 8(2): 415-423, 2022. DOI:

10.1158/1535-7163.MCT-08-0692

Doktorova H, Hrabeta J, Khalil M, Eckschlager T: Hypoxiainduced chemoresistance in cancer cells: The role of not only

HIF-1. Biomedical Papers 159(2): 166-177, 2022. DOI:

10.5507/bp.2015.025

Liang C, Shi S, Meng Q, Liang D, Ji S, Zhang B, Qin Y, Xu J,

Ni Q, Yu X: Complex roles of the stroma in the intrinsic

resistance to gemcitabine in pancreatic cancer: where we are and

where we are going. Experimental & Molecular Medicine

49(12): e406-e406, 2021. DOI: 10.1038/emm.2017.255

Qiang L, Wu T, Zhang HW, Lu N, Hu R, Wang YJ, Zhao L,

Chen FH, Wang XT, You QD, Guo QL: HIF-1α is critical for

hypoxia-mediated maintenance of glioblastoma stem cells by

activating Notch signaling pathway. Cell Death Differ 19(2):

284-294, 2012. DOI: 10.1038/cdd.2011.95

Onishi H, Nakamura K, Yanai K, Nagai S, Nakayama K, Oyama

Y, Fujimura A, Ozono K, Yamasaki A: Cancer therapy that

targets the Hedgehog signaling pathway considering the cancer

microenvironment (Review). Oncology Reports 47(5): 93, 2022.

DOI: 10.3892/or.2022.8304

Shih I, Wang T: Notch signaling, gamma-secretase inhibitors,

and cancer therapy. Cancer Research 67(5): 1879-1882, 2022.

DOI: 10.1158/0008-5472.CAN-06-3958

2922

66 Li P, Lin X, Zhang J, Li Y, Lu J, Huang F, Zheng C, Xie J, Wang

J, Huang C: The expression of presenilin 1 enhances

carcinogenesis and metastasis in gastric cancer. Oncotarget 7(9):

10650-10662, 2022. DOI: 10.18632/oncotarget.7298

67 Mori M, Miyamoto T, Yakushiji H, Ohno S, Miyake Y,

Sakaguchi T, Hattori M, Hongo A, Nakaizumi A, Ueda M, Ohno

E: Effects of N-[N-(3, 5-difluorophenacetyl-l-alanyl)]-Sphenylglycine t-butyl ester (DAPT) on cell proliferation and

apoptosis in Ishikawa endometrial cancer cells. Human Cell

25(1): 9-15, 2020. DOI: 10.1007/s13577-011-0038-8

68 Li JY, Li RJ, Wang HD: γ-secretase inhibitor DAPT sensitizes tAUCB-induced apoptosis of human glioblastoma cells in vitro via

blocking the p38 MAPK/MAPKAPK2/Hsp27 pathway. Acta

Pharmacol Sin 35(6): 825-831, 2014. DOI: 10.1038/aps.2013.195

69 Inamura N, Kimura T, Wang L, Yanagi H, Tsuda M, Tanino M,

Nishihara H, Fukuda S, Tanaka S: Notch1 regulates invasion and

metastasis of head and neck squamous cell carcinoma by

inducing EMT through c-Myc. Auris Nasus Larynx 44(4): 447457, 2022. DOI: 10.1016/j.anl.2016.08.003

70 Zhou J, Jain S, Azad A, Xu X, Yu H, Xu Z, Godbout R, Fu Y:

Notch and TGFβ form a positive regulatory loop and regulate

EMT in epithelial ovarian cancer cells. Cellular Signalling 28(8):

838-849, 2020. DOI: 10.1016/j.cellsig.2016.03.016

71 Lin H, Zhang T, Chen M, Shen J: Novel biomarkers for the

diagnosis and prognosis of gallbladder cancer. Journal of

Digestive Diseases 22(2): 62-71, 2021. DOI: 10.1111/17512980.12966

72 Enjoji M, Yamaguchi K, Nakamuta M, Nakashima M, Kotoh K,

Tanaka M, Nawata H, Watanabe T: Movement of a novel serum

tumour marker, RCAS1, in patients with biliary diseases.

Digestive and Liver Disease 36(9): 622-627, 2022. DOI:

10.1016/j.dld.2004.04.006

73 Yang G, Lu Z, Meng F, Wan Y, Zhang L, Xu Q, Wang Z:

Circulating miR-141 as a potential biomarker for diagnosis,

prognosis and therapeutic targets in gallbladder cancer. Scientific

Reports 12(1): 10072, 2022. DOI: 10.1038/s41598-022-13430-8

74 Mehrotra R, Tulsyan S, Hussain S, Mittal B, Singh Saluja S,

Singh S, Tanwar P, Khan A, Javle M, Hassan M, Pant S, De

Aretxabala X, Sirohi B, Rajaraman P, Kaur T, Rath G: Genetic

landscape of gallbladder cancer: Global overview. Mutation

Research/Reviews in Mutation Research 778: 61-71, 2020. DOI:

10.1016/j.mrrev.2018.08.003

75 Aloia T, Járufe N, Javle M, Maithel S, Roa J, Adsay V, Coimbra

F, Jarnagin W: Gallbladder Cancer: expert consensus statement.

HPB 17(8): 681-690, 2018. DOI: 10.1111/hpb.12444

76 Onishi H: Hedgehog signaling pathway as a new therapeutic

target in pancreatic cancer. World Journal of Gastroenterology

20(9): 2335, 2014. DOI: 10.3748/wjg.v20.i9.2335

77 Xu S, Zhan M, Wang J: Epithelial-to-mesenchymal transition in

gallbladder cancer: from clinical evidence to cellular regulatory

networks. Cell Death Discovery 3(1): 17069, 2022. DOI:

10.1038/cddiscovery.2017.69

78 Boutros C, Gary M, Baldwin K, Somasundar P: Gallbladder

cancer: Past, present and an uncertain future. Surgical Oncology

21(4): e183-e191, 2020. DOI: 10.1016/j.suronc.2012.08.002

Received April 21, 2023

Revised May 12, 2023

Accepted May 15, 2023

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る