リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Concurrent Activation of Kras and Canonical Wnt Signaling Induces Premalignant Lesions That Progress to Extrahepatic Biliary Cancer in Mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Concurrent Activation of Kras and Canonical Wnt Signaling Induces Premalignant Lesions That Progress to Extrahepatic Biliary Cancer in Mice

Nagao, Munemasa 京都大学 DOI:10.14989/doctor.k24283

2022.11.24

概要

胆道癌は難治性癌の一つであり、予後改善のためには新規治療法の開発が求められている。そのためには、胆道癌およびその前癌病変の発生機序を明らかにすることが重要である。近年、胆管癌および胆嚢癌の前癌病変として微小乳頭状病変であるbiliary intraepithelial neoplasia(BilIN)、乳頭状病変であるintraductal papillary neoplasm of the bile duct(IPNB)やintracholecystic papillary neoplasm of the gallbladder(ICPN)という概念が提唱された。しかし、胆道癌における前癌病変の発生メカニズムや、癌への進展メカニズムについては未だ十分に明らかになっていない。今回、胆管癌および胆嚢癌で遺伝子変異の比較的多いKrasおよびWntシグナルの胆道腫瘍形成における役割について解析した。

 まず、胆道上皮選択的に遺伝子改変を誘導するCreERマウスを探索するために、胆道上皮特異的に高発現する分子を調べた。免疫染色の結果、胆道上皮細胞においてHnf1bが高発現していることが判明した。Hnf1βCreER; Rosa-LacZマウスを用いて細胞系譜解析を行った結果、タモキシフェン誘導性に胆管と胆嚢上皮細胞の遺伝子組み換えが可能となることを示した。次に、胆道腫瘍発生におけるKrasおよびWntシグナルの活性化による影響についてHnf1βCreER; KrasG12D; Ctnnb1lox(ex3)/+(HKβ)マウスを作成し解析を行った結果、肝外胆管にBiliN、胆嚢にICPNがそれぞれ形成されることを見出した。腫瘍部では幽門腺マーカーであるGSIIが陽性となり、胃型の形質を持っていると考えられた。さらに、HKβマウスで形成した胆道腫瘍のmalignant potentialを検証するためにHKβマウスの肝外胆管および胆嚢より胆道腫瘍スフェロイドを樹立した後に免疫不全マウスにxenograftを行って解析した結果、24例中2例の低い頻度ではあるが、胆道癌へと進展することが明らかとなった。H(Hnf1βCreER)およびHK(Hnf1βCreER; KrasG12D),Hβ(Hnf1βCreER; Ctnnb1lox(ex3)/+),HKβマウスの肝外胆管より胆管スフェロイドを樹立した後に、網羅的遺伝子発現解析を行った結果、HKβスフェロイドではTGFbシグナルに関連する遺伝子、およびc-Mycの発現が上昇していた。腫瘍形成におけるc-Mycの機能的解析のため、c-Mycをノックダウンもしくは薬剤にて阻害した結果、HKβスフェロイドの増殖が抑制された。一方、TGFbシグナルの腫瘍形成および癌への進展における機能的解析のため、Smad4/Tgfbr2のノックダウンもしくは薬剤によるTGFbシグナルの阻害を行った結果、HKβスフェロイドの増殖速度が上昇し、xenograftの系で癌への進行が促進された。さらに、ヒトの胃型ICPNの免疫染色にてKrasおよびWntシグナル、c-Myc、TGFbシグナルが高発現しており、マウスの結果はヒトでも矛盾しないことが示された。

 以上より、マウス肝外胆管にてKrasとcanonical Wnt経路の活性化によりICPNおよびBilINが形成され、胆道癌へ進行することが明らかになった。腫瘍形成メカニズムとして、c-Mycが腫瘍促進的、TGFbシグナルが腫瘍抑制的に働くことが示された。

参考文献

1. Naghavi M. Europe PMC funders group the global burden of cancer 2013. JAMA Oncol 2015;1:505–27.

2. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarci- noma. Gastroenterology 2013;145:1215–29.

3. Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020;76:182–8.

4. Lendvai G, Szekercz´es T, Illy´es I, D´ora R, Kontsek E, G´ogl A, et al. Cholangio- carcinoma: classification, histopathology and molecular carcinogenesis. Pathol Oncol Res 2020;26:3–15.

5. Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020;17:557–88.

6. Hundal R, Shaffer EA. Gallbladder cancer: epidemiology and outcome. Clin Epidemiol 2014;6:99–109.

7. Zen Y, Adsay NV, Bardadin K, Colombari R, Ferrell L, Haga H, et al. Biliary intraepithelial neoplasia: an international interobserver agreement study and proposal for diagnostic criteria. Mod Pathol 2007;20:701–9.

8. Ohtsuka M, Shimizu H, Kato A, Yoshitomi H, Furukawa K, Tsuyuguchi T, et al. Intraductal papillary neoplasms of the bile duct. Int J Hepatol 2014;2014:1–10.

9. Nakanuma Y, Jang KT, Fukushima N, Furukawa T, Hong SM, Kim H, et al. A statement by the Japan-Korea expert pathologists for future clinicopathological and molecular analyses toward consensus building of intraductal papillary neoplasm of the bile duct through several opinions at the present stage. J Hepatobiliary Pancreat Sci 2018;25:181–7.

10. Adsay V, Jang KT, Roa JC, Dursun N, Ohike N, Bagci P, et al. Intracholecystic papillary-tubular neoplasms (ICPN) of the gallbladder (neoplastic polyps, adenomas, and papillary neoplasms that are ≥1.0 cm): clinicopathologic and immunohistochemical analysis of 123 cases. Am J Surg Pathol 2012;36: 1279–301.

11. Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, et al. Genomic spectra of biliary tract cancer. Nat Genet 2015;47:1003–10.

12. Wardell CP, Fujita M, Yamada T, Simbolo M, Fassan M, Karlic R, et al. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J Hepatol 2018;68:959–69.

13. Lin Y-K, Fang Z, Jiang T-Y, Wan Z-H, Pan Y-F, Ma Y-H, et al. Combination of Kras activation and PTEN deletion contributes to murine hepatopancreatic ductal malignancy. Cancer Lett 2018; 421:161–9.

14. Nakagawa H, Suzuki N, Hirata Y, Hikiba Y, Hayakawa Y, Kinoshita H, et al. Biliary epithelial injury-induced regenerative response by IL-33 promotes cholangiocarcinogenesis from peribiliary glands. Proc Natl Acad Sci U S A. 2017;114:E3806–15.

15. Kiguchi K, Carbajal S, Chan K, Beltr´an L, Ruffino L, Shen J, et al. Constitutive expression of ErbB-2 in gallbladder epithelium results in development of adenocarcinoma. Cancer Res 2001;61:6971–6.

16. Hill MA, Alexander WB, Guo B, Kato Y, Patra K, O’Dell MR, et al. Kras and Tp53 mutations cause cholangiocyte- and hepatocyte-derived cholangiocarcinoma. Cancer Res 2018;78:4445–51.

17. Jusakul A, Cutcutache I, Yong CH, Lim JQ, Huang MN, Padmanabhan N, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov 2017;7:1116–35.

18. Hsu M, Sasaki M, Igarashi S, Sato Y, Nakanuma Y. KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer 2013;119:1669–74.

19. Pandey A, Stawiski EW, Durinck S, Gowda H, Goldstein LD, Barbhuiya MA, et al. Integrated genomic analysis reveals mutated ELF3 as a potential gallbladder cancer vaccine candidate. Nat Commun 2020;11:1–13.

20. Lin J, Peng X, Dong K, Long J, Guo X, Li H, et al. Genomic characterization of co- existing neoplasia and carcinoma lesions reveals distinct evolutionary paths of gallbladder cancer. Nat Commun 2021;12:1–11.

21. Goeppert B, Stichel D, Toth R, Fritzsche S, Loeffler MA, Schlitter AM, et al. Integrative analysis reveals early and distinct genetic and epigenetic changes in intraductal papillary and tubulopapillary cholangiocarcinogenesis. Gut 2021;71: 391–401.

22. Solar M, Cardalda C, Houbracken I, Martín M, Maestro MA, De Medts N, et al. Pancreatic exocrine duct cells give rise to insulin-producing b cells during embryogenesis but not after birth. Dev Cell 2009;17:849–60.

23. Harada N, Tamai Y, Ishikawa TO, Sauer B, Takaku K, Oshima M, et al. Intestinal polyposis in mice with a dominant stable mutation of the b-catenin gene. EMBO J 1999;18:5931–42.

24. Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y, Maruno T, et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat Genet 2013;45:98–103.

25. Miyoshi H, Stappenbeck TS. In vitro expansion and genetic modification of gastrointestinal stem cells as organoids. 2008;42:157–62.

26. Rodrigo-Torres D, Aff`o S, Coll M, Morales-Ibanez O, Mill´an C, Blaya D, et al. The biliary epithelium gives rise to liver progenitor cells. Hepatology 2014;60: 1367–77.

27. Shimizu T, Choi E, Petersen CP, Noto JM, Romero-Gallo J, Piazuelo MB, et al. Characterization of progressive metaplasia in the gastric corpus mucosa of Mongolian gerbils infected with Helicobacter pylori. J Pathol 2016;239:399–410.

28. Buzzelli JN, Chalinor HV, Pavlic DI, Sutton P, Menheniott TR, Giraud AS, et al. IL33 is a stomach alarmin that initiates a skewed Th2 response to injury and infection. Cell Mol Gastroenterol Hepatol 2015;1:203–21.

29. Goto N, Ueo T, Fukuda A, Kawada K, Sakai Y, Miyoshi H, et al. Distinct roles of HES1 in normal stem cells and tumor stem-like cells of the intestine. Cancer Res 2017;77:3442–54.

30. Yoshino J, Akiyama Y, Shimada S, Ogura T, Ogawa K, Ono H, et al. Loss of ARID1A induces a stemness gene ALDH1A1 expression with histone acetylation in the malignant subtype of cholangiocarcinoma. Carcinogenesis 2020;41:734–42.

31. Massagu´e J. How cells read TGF-b signals. Nat Rev Mol Cell Biol 2000;1:169–78.

32. Coffinier C, Barra J, Babinet C, Yaniv M. Expression of the vHNF1/HNF1b homeoprotein gene during mouse organogenesis. Mech Dev 1999;89:211–3.

33. Dang CV. MYC on the path to cancer. Cell 2012;149:22–35.

34. Zirath H, Frenzel A, Oliynyk G, Segerstr€om L, Westermark UK, Larsson K, et al. MYC inhibition induces metabolic changes leading to accumu- lation of lipid droplets in tumor cells. Proc Natl Acad Sci U S A 2013; 110:10258–63.

35. Roberts AB, Wakefield LM. The two faces of transforming growth factor b in carcinogenesis. Proc Natl Acad Sci U S A 2003;100:8621–3.

36. Lu€ttges J, Galehdari H, Br€ocker V, Schwarte-Waldhoff I, Henne-Bruns D, Kl€oppel G, et al. Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am J Pathol 2001; 158:1677–83.

37. Nakanishi Y, Zen Y, Kondo S, Itoh T, Itatsu K, Nakanuma Y. Expression of cell cycle–related molecules in biliary premalignant lesions: biliary intrae- pithelial neoplasia and biliary intraductal papillary neoplasm. Hum Pathol 2008;39:1153–61.

38. Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 2011;43:34–41.

39. Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms: other issues. Histopathology 2003;43:196–7.

40. Yu DD, Guo SW, Jing YY, Dong YL, Wei LX. A review on hepatocyte nuclear factor-1beta and tumor. Cell Biosci 2015;5:1–8.

41. Liu J, Willet SG, Bankaitis ED, Xu Y, Wright CVE, Gu G. Non-parallel recombination limits cre-loxP-based reporters as precise indicators of condi- tional genetic manipulation. Genesis 2013;51:436–42.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る