リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「交流・多端子直流システムの電圧および過渡安定性に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

交流・多端子直流システムの電圧および過渡安定性に関する研究

川本 直輝 大阪府立大学 DOI:info:doi/10.24729/00017349

2021.04.20

概要

近年,地球温暖化対策や脱原発を目的として風力発電および太陽光発電をはじめとした再生可能エネルギーの導入が進んでいる.世界規模における導入により,世界全体の発電量における 5.3 % を風力発電,2.7 % を太陽光発電が占めている [1, 2].また,風力発電は,陸上もしくは洋上において発電される.文献 [3] は,世界全体で 2018 年時点で陸上風力発電において 542 GW,洋上風力発電において 23 GW が導入済みであり,2050 年時点で陸上風力発電において 5044 GW,洋上風力発電において 1000 GW が導入予定であると述べている.このため,洋上風力発電の発電量に関して,2018 年時点と比較して 2050 年において 40 倍以上の発電量に増加することが想定されている[3].

洋上風力発電は,海底に敷設された送電線により,海上の風力発電所から陸地側変電所に送電する.海底の送電線には,交流送電もしくは直流送電を適用可能であり,送電線の亘長が長くなると表皮効果のない直流送電の方がコスト的に優れる[4, 5, 6].直流送電を適用する場合には,電力変換器を用いて交流電力と直流電力を変換する必要がある.文献 [5] では,1 例として,2 箇所の陸地側変電所間を海底ケーブルにより接続する場合に,電力変換器のコストを加味した場合においても,亘長が 120 km を超えると直流送電がコスト的に優れる事例を述べている.電力変換器には,他励式変換器(Line-Commuted Converter:以下,LCC)および自励式変換器(Voltage-Source Converter:以下,VSC)という 2 種類の変換器が存在している.LCC はサイリスタなど自己消弧能力をもたない素子を用いて,VSC はInsulated Gate Bipolar Transistor(以下,IGBT)などの自己消弧素子を用いて,交流電力と直流電力を変換する[7].

洋上風力発電は,2018 年時点において世界全体で導入されている 23 GW の内,欧州では 19 GW,特に英国では 8.2 GW 導入されている [3].英国における洋上風力発電では,洋上風力発電所と陸地側変電所の 2 箇所を接続するpoint-to-point 接続を高圧直流送電(High-Voltage Direct Current:以下,HVDC)に対して適用している [8].また,洋上風力発電に対して,直流システム内に 3 箇所以上の端子および 2 つ以上の送電線を持つ多端子直流送電 (Multi-Terminal Direct Current:以下,MTDC)を適用することも可能であり,Nanao 3 端子 [9] および Zhoushan 5 端子 [10] DC システムが既に建設され運用が開始されている [11].さらに,North Sea Wind Power Hub Programme において欧州の北海にて,MTDC システムを適用した大規模洋上風力発電所も建設予定である[12].なお,MTDC システムは,複数の送電線を用いることで 1 つの送電線に故障が生じた際にも他の送電線を介して送電可能であること,複数地点の洋上風力発電所を統合することで各発電所の有する出力変動が平滑化できるなど複数の利点を有する [13].本論文では,Alternative Current(以下,AC)システムに MTDC システムが導入されたシステム全体を AC/MTDC システムと呼称する.

このMTDC システムによる送電は,電力変換器に VSC を用いる必要がある.これは,電力変換器にLCC を用いる場合は,絶えず潮流が変化し続けるMTDC システムにおける運用が困難なためである [4].前述の Nanao 3 端子および Zhoushan 5 端子 DC システムも電力変換器にVSC を用いている.

参考文献

[1] BP. Statistical Review of World Energy 2020, 2020.

[2] 自 然 エ ネ ル ギ ー 財 団 国 際 エ ネ ル ギ ー. https://www.renewable- ei.org/statistics/international/ : 2020 年 12 月 16 日閲覧.

[3] IRENA. FUTURE OF WIND Deployment, investment, technology, grid inte- gration and socio-economic aspects. International Renewable Energy Agency, 2019.

[4] D. V. Hertem and M. Ghandhari. Multi-terminal VSC HVDC for the Eu- ropean supergrid: Obstacles. Renewable and Sustainable Energy Reviews, Vol. 14, No. 9, pp. 3156–3163, 2010.

[5] D. V. Hertem, O. Gomis-Bellmunt, and J. Liang. HVDC Grids for Offshore and Supergrid of the Futeure. John Wiley & Sons, Inc., 2016.

[6] 真山修二. 多端子直流送電システムの経済性と便益性の評価手法の開発. 電気学会論文誌 B, Vol. 137, No. 11, pp. 749–752, 2017.

[7] 谷口治人. 電力システム解析-モデリングとシミュレーション-. オーム社, 2009.

[8] F. M. Gonzalez-Longatt. Optimal power flow in Multi-terminal HVDC net- works for DC-System Operator: Constant current operation. In 2015 50th International Universities Power Engineering Conference (UPEC), pp. 1–6, 2015.

[9] J. Fu, Z. Yuan, Y. Wang, S. Xu, W. Wei, and Y. Luo. Control strategy of system coordination in Nanao multi-terminal VSC-HVDC project for wind integration. In 2014 IEEE PES General Meeting — Conference Exposition, pp. 1–5, 2014.

[10] Y. Pipelzadeh, B. Chaudhuri, T. Green, Y. Wu, H. Pang, and J. Cao. Mod- elling and Dynamic Operation of the Zhoushan DC Grid: Worlds First Five-Terminal VSC-HVDC Project. pp. 87–95, 2015.

[11] Y. Wen, J. Zhan, C. Y. Chung, and W. Li. Frequency Stability Enhancement of Integrated AC/VSC-MTDC Systems With Massive Infeed of Offshore Wind Generation. IEEE Transactions on Power Systems, Vol. 33, No. 5, pp. 5135– 5146, 2018.

[12] North Sea Wind Power Hub Programme. https://northseawindpowerhub.eu/: 2020 年 12 月 16 日閲覧.

[13] N. Chaudhuri, B. Chaudhuri, R. Majumder, and A. Yazdani. Multi-Terminal Direct-Current Grids: Modeling, Analysis, and Control. John Wiley & Sons, Inc., 2014.

[14] 岡本浩. 電力供給を支える制御. 電気学会誌, Vol. 128, No. 7, pp. 431–434, 2008.

[15] A. Muir and J. Lopatto. Final report on the august 14, 2003 blackout in the united states and canada: Causes and recommendations, 2004.

[16] 横山明彦, 太田宏次監修. 電力系統安定化システム工学. 電気学会, 2015.

[17] 吉田裕宇, 河田謙一, 福山良和, 高山信一, 中西要祐. 電圧信頼度を考慮した Particle Swarm Optimization による電圧無効電力制御方式の検討. 電気学会論文誌 B, Vol. 119, No. 12, pp. 1462–1469, 1999.

[18] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi. A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Transactions on Power Systems, Vol. 15, No. 4, pp. 1232–1239, 2000.

[19] 青木秀憲, 水谷芳史. 制御手順を考慮した遺伝的アルゴリズムを用いる電圧無効電力制御. 電気学会論文誌 B, Vol. 119, No. 7, pp. 757–764, 1999.

[20] 青木秀憲, 水谷芳史. 制御手順を考慮したPSO による電圧無効電力制御. 電気学会論文誌 B, Vol. 124, No. 1, pp. 95–102, 2004.

[21] 谷本昌彦, 森田博信, 高橋修, 坂本邦夫, 黒川隆久, 福井伸太. 個別 VQC 装置への目標電圧指令による中央 VQC 方式. 電気学会論文誌 B, Vol. 126, No. 8, pp. 783–788, 2006.

[22] 重森康央, 石亀篤司, 矢壷修, 河口健. 電圧制御機器の制御遅れを考慮した電圧無効電力制御. 電気学会論文誌 B, Vol. 129, No. 7, pp. 859–868, 2009.

[23] 下根孝章, 矢壷修, 石亀篤司, 長谷川嗣人. 需要変動を考慮した電圧無効電力制御の開発. 電気学会論文誌 B, Vol. 131, No. 10, pp. 826–835, 2011.

[24] S. R. Islam, D. Sutanto, and K. M. Muttaqi. Coordinated Decentralized Emergency Voltage and Reactive Power Control to Prevent Long-Term Volt- age Instability in a Power System. IEEE Transactions on Power Systems, Vol. 30, No. 5, pp. 2591–2603, 2015.

[25] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. Definition and classification of power system stability. IEEE Trans. Power System, Vol. 19, No. 2, pp. 1387–1401, 2004.

[26] 名和小太郎. 北米大停電. 情報管理, Vol. 49, No. 9, pp. 513–514, 2006.

[27] A. Bidadfar, O.S. Romano, V. Akhmatov, N.A. Cutululis, and P.E. Sørensen. Impact of primary frequency control of offshore HVDC grids on interarea modes of power systems. Energies, Vol. 12, pp. 1–14, 2019.

[28] 関根泰次, 川路恭郎, 高橋一弘. 電力系統における電圧安定性. 電気学会論文誌 B, Vol. 111, No. 4, pp. 289–296, 1991.

[29] 餘利野直人, 藤村勉, 佐々木博司, 杉原弘章, 中西要祐. 変圧器タップ群の逆動作に関する判定基準およびタップロック制御について. 電気学会論文誌 B, Vol. 117, No. 9, pp. 1238–1244, 1997.

[30] 後藤泰之, 一柳勝宏. 発電機無効電力出力制限を考慮した系統電圧崩壊の時系列解析. 愛知工業大学研究報告, Vol. 30, pp. 1–7, 1995.

[31] F. Milano. Power System Modeling and Scripting. Springer, 2010.

[32] M. Glavic, M. Hajian, W. Rosehart, and T. Van Cutsem. Receding-Horizon Multi-Step Optimization to Correct Nonviable or Unstable Transmission Volt- ages. IEEE Transactions on Power Systems, Vol. 26, No. 3, pp. 1641–1650, 2011.

[33] 電力系統標準モデルの普及・拡充調査専門委員会:モデル拡充に関する報告書(マニュアル), 2001.

[34] IRENA. Planning for the renewable future: Long-term modelling and tools to expand variable renewable power in emerging economies. International Renewable Energy Agency, 2017.

[35] F. Milano, F. Dorfler, G. Hug, D. Hill, and G. Verbic. Foundations and Challenges of Low-Inertia Systems. 2018.

[36] H. Keko, A. J. Duque, and V. Miranda. A Multiple Scenario Security Con- strained Reactive Power Planning Tool Using EPSO. In 2007 International Conference on Intelligent Systems Applications to Power Systems, pp. 1–6, 2007.

[37] D. Devaraj and J. Roselyn. Genetic algorithm based reactive power dispatch for voltage stability improvement. International Journal of Electrical Power & Energy Systems, Vol. 32, pp. 1151–1156, 2010.

[38] P. Rajkumar and D. Devaraj. Differential evolution approach for contingency constrained reactive power planning. Journal of Electrical Systems, Vol. 7, pp. 165–178, 2011.

[39] M. T. Hagh and S. Galvani. Minimization of load shedding by sequential use of linear programming and particle swarm optimization. Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 19, pp. 551–563, 2011.

[40] M. M. H. Bioki, R. Fadaeinedjad, and H. R. Esmaeilian. An Application of PSO in Optimal Load Shedding Considering Voltage Stability. In 6th Global Conference on Power Control and Optimization, 2012.

[41] M. De and S. K. Goswami. Optimal Reactive Power Procurement With Volt- age Stability Consideration in Deregulated Power System. IEEE Transactions on Power Systems, Vol. 29, No. 5, pp. 2078–2086, 2014.

[42] K. Vaisakh and P. Rao. Differential evolution based optimal reactive power dispatch for voltage stability enhancement. Journal of Theoretical and Applied Information Technology, Vol. 4, pp. 700–709, 2008.

[43] P. Kessel and H. Glavitsch. Estimating the Voltage Stability of a Power System. IEEE Transactions on Power Delivery, Vol. 1, No. 3, pp. 346–354, 1986.

[44] Y. Tanaka, K. Suzuki, and S. Iwamoto. Shunt Capacitor Renewal Planning with a Cost Leveling Strategy using the Condition Age Model. IEEJ Trans- actions on Power and Energy, Vol. 131, No. 9, pp. 756–763, 2011.

[45] H. Liu, A. Bose, and V. Venkatasubramanian. A fast voltage security as- sessment method using adaptive bounding. IEEE Transactions on Power Systems, Vol. 15, No. 3, pp. 1137–1141, 2000.

[46] H. Mori and K. Takeda. Parallel simulated annealing for power system de- composition. Vol. 9, pp. 789–795, 1994.

[47] H. F. Latorre, M. Ghandhari, and L. Soder. Active and reactive power control of a VSC-HVdc. Electric Power Systems Research, Vol. 78, No. 10, pp. 1756– 1763, 2008.

[48] J. A. Suul, S. D’Arco, P. Rodriguez, and M. Molinas. Extended stability range of weak grids with Voltage Source Converters through impedance-conditioned grid synchronization. In 11th IET International Conference on AC and DC Power Transmission, pp. 1–10, 2015.

[49] J. A. Suul, S. D’Arco, P. Rodriguez, and M. Molinas. Impedance-compensated grid synchronisation for extending the stability range of weak grids with volt- age source converters. IET Generation, Transmission & Distribution, Vol. 10, No. 6, pp. 1315–1326, 2016.

[50] T. Hikihara and Y. Susuki. Region for stable operation in electric power system with dc transmission. 平成 12 年電気関係学会関西支部連合大会, p. G158, 2000.

[51] Y. Susuki, T. Hikihara, and H.-D. Chiang. Stability boundaries analysis of electric power system with DC transmission based on differential algebraic equation system. IEICE Transactions Fundamentals, Vol. E87-A, No. 9, pp. 2339–2346, 2004.

[52] Y. Susuki and T. Hikihara. Transient dynamics in electric power system with DC transmission: fractal growth in stability boundary. IEE Proceedings - Circuits, Devices and Systems, Vol. 152, No. 2, pp. 159–164, 2005.

[53] N. Jiang and H. D. Chiang. Energy Function for Power System With De- tailed DC Model: Construction and Analysis. IEEE Transactions on Power Systems, Vol. 28, No. 4, pp. 3756–3764, 2013.

[54] J. Machowski, P. Kacejko, L. Nogal, and M. Wancerz. Power system sta- bility enhancement by WAMS-based supplementary control of multi-terminal HVDC networks. Control Engineering Practice, Vol. 21, No. 5, pp. 583–592, 2013.

[55] N. R. Chaudhuri, R. Majumder, and B. Chaudhuri. System Frequency Sup-port Through Multi-Terminal DC (MTDC) Grids. IEEE Transactions on Power Systems, Vol. 28, No. 1, pp. 347–356, 2013.

[56] D. Zonetti, R. Ortega, and A. Benchaib. A globally asymptotically stable decentralized PI controller for multi-terminal high-voltage DC transmission systems. In European Control Conference, pp. 1397–1403, 2014.

[57] J. Renedo, A. Garcia-Cerrada, and L. Rouco. Active Power Control Strate- gies for Transient Stability Enhancement of AC/DC Grids With VSC-HVDC Multi-Terminal Systems. IEEE Transactions on Power Systems, Vol. 31, No. 6, pp. 4595–4604, 2016.

[58] A. G. Endegnanew, G. Bergna-Diaz, and K. Uhlen. Avoiding AC/DC grid interaction in MMC based MTDC systems. In 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), pp. 1–8, 2017.

[59] Y. Ueda, T. Enomoto, and H. B. Stewart. Chaotic transients and fractal structures governing coupled swing dynamics. In J. H. Kim and J. Stringer, editors, Applied Chaos. Wiley, 1992.

[60] Y. Ueda, Y. Ueda, H. B. Steward, and R. H. Abraham. Nonlinear resonance in basin portraits of two coupled swings under periodic forcing. Int. J. Bifur- cation Chaos, Vol. 8, No. 6, pp. 1183–1197, 1998.

[61] H. D. Chiang and L. F. C. Alberto. Stability Regions of Nonlinear Dynamical Systems. Cambridge University Press, 2015.

[62] 谷口経雄. 電力系統の拡張したリアプノフ関数構成の一方法. 電気学会論文誌 B, Vol. 98, No. 4, pp. 355–362, 1978.

[63] 石亀篤司, 坂口宏睦, 高島淳, 須崎志郎. 線形行列不等式の解放に基づく電力系統のリアプノフ関数構成. 電気学会論文誌 B, Vol. 125, No. 5, pp. 461– 468, 2005.

[64] H. D. Chiang. Direct Methods for Stability Analysis of Electrical Power Sys- tem: Theoretical Foundation, BCU Methodologies and Application. Wiley, 2011.

[65] M. Araki. Stability of large-scale nonlinear systems—Quadratic-order the- ory of composite-system method using M -matrices. IEEE Transactions on Automatic Control, Vol. AC-23, No. 2, pp. 129–142, 1978.

[66] 荒木光彦, 池田雅夫, 吉川恒夫. 大規模動的システムの制御理論〔I〕. 計測と制御, Vol. 22, No. 10, pp. 868–876, 1983.

[67] A. Saberi and H. Khalil. Quadratic-type Lyapunov functions for singularly perturbed systems. IEEE Transactions on Automatic Control, Vol. AC-29, No. 6, pp. 542–550, 1984.

[68] P. Simiyu, A. Xin, G. T. Bitew, M. Shahzad, W. Kunyu, and L. K. Yuan. A Review of the DC Voltage Coordinated Control Strategies for Multi-terminal VSC MVDC Distribution Network. The Journal of Engineering, Vol. 2019, No. 16, pp. 1462–1468, 2019.

[69] P. M. Anderson and A. A. Fouad. Power System Control and Stability. IEEE Press, 2nd Ed., USA, 2003.

[70] 大橋悠介, 薄良彦, 石亀篤司, 舟木剛. 交流・多端子直流送電システムに対する動特性モデルの構築と過渡解析. 電力系統技術研究会, pp. 5–10, 2019.

[71] Y. Susuki, N. Kawamoto, Y. Ohashi, A. Ishigame, T. Funaki, and S. D’Arco. A Modular Approach to Large-Signal Modeling of an Intercon- nected AC/MTDC System. In Proc. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), pp. 945–949, 2020.

[72] P. Aristidou, L. Papangelis, X. Guillaud, and T. Van Cutsem. Modular mod- elling of combined AC and DC systems in dynamic simulations. In 2015 IEEE Eindhoven PowerTech, pp. 1–6, 2015.

[73] 大橋悠介. 交流・多端子直流送電システムに対する動特性モデルの構築に関する研究. Master’s thesis, 大阪府立大学, 2019.

[74] 大澤靖治. 電力システム工学. オーム社, 2001.

[75] A. Trivedi, D. Srinivasan, S. Biswas, and T. Reindl. A genetic algorithm - Dif- ferential evolution based hybrid framework: Case study on unit commitment scheduling problem. Information Sciences, Vol. 354, pp. 275–300, 2016.

[76] 川本直輝, 島田康平, 田中将太, 高山聡志, 石亀篤司. 緊急時 VQC に対する最適メタ手法の検討. 平成 28 年電気関係学会関西連合大会, 2015.

[77] 北山哲士, 荒川雅生, 山崎光悦. Discrete Differential Evolution の提案 (機械要素, 潤滑, 設計, 生産加工, 生産システムなど). 日本機械学会論文集 C 編, Vol. 76, No. 772, pp. 3828–3836, 2010.

[78] 相吉英太郎, 安田恵一郎編. メタヒューリスティクスと応用. 電気学会, 2007.

[79] R. Storn and K. Price. Differential Evolution - A Simple and Efficient Heuris- tic for Global Optimization over Continuous Spaces. Journal of Global Opti- mization, Vol. 11, pp. 341–359, 1997.

[80] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of International Conference on Neural Networks, Vol. 4, pp. 1942–1948, 1995.

[81] C. H. Liang, C. Y. Chung, K. P. Wong, and X. Z. Duan. Parallel Opti- mal Reactive Power Flow Based on Cooperative Co-Evolutionary Differential Evolution and Power System Decomposition. IEEE Transactions on Power Systems, Vol. 22, No. 1, pp. 249–257, 2007.

[82] P. Lagonotte, J. C. Sabonnadiere, J. Y. Leost, and J. P. Paul. Structural analysis of the electrical system: application to secondary voltage control in France. IEEE Transactions on Power Systems, Vol. 4, No. 2, pp. 479–486, 1989.

[83] N. Kawamoto, S. Takayama, and A. Ishigame. Emergency Voltage and Re- active Power Control Using CCDE. 平成 29 年電気学会電子・情報・システム部門大会, 2017.

[84] Power Systems Test Case Archive. http://labs.ece.uw.edu/pstca/ : 2020 年 12 月 15 日閲覧.

[85] M. K. Bucher, R. Wiget, G. Andersson, and C. M. Franck. Multiterminal HVDC Networks?What is the Preferred Topology? IEEE Transactions on Power Delivery, Vol. 29, No. 1, pp. 406–413, 2014.

[86] T. M. L. Assis, S. Kuenzel, and B. C. Pal. Impact of Multi-terminal HVDC Grids on Enhancing Dynamic Power Transfer Capability. IEEE Transactions on Power Systems, Vol. 32, No. 4, pp. 2652–2662, 2017.

[87] R. Sandano, M. Farrell, and M. Basu. Enhanced master/slave control strategy enabling grid support services and offshore wind power dispatch in a multi- terminal VSC HVDC transmission system. Renewable Energy, Vol. 113, pp. 1580–1588, 2017.

[88] K. Konishi, Y. Sugitani, and N. Hara. Analysis of a dc bus system with a nonlinear constant power load and its delayed feedback control. Physical Review E, Vol. 89, No. 2, p. 022906, 2014.

[89] K. Konishi, Y. Sugitani, and N. Hara. Dynamics of dc bus networks and their stabilization by decentralized delayed feedback. Physical Review E, Vol. 91, No. 1, p. 012911, 2015.

[90] M. A. Pai. Energy Function Analysis for Power System Stability. Kluwer Academic Publishers, 1989.

[91] M. Ghandhari, G. Andersson, and I.A. Hiskens. Control Lyapunov functions for controllable series devices. IEEE Transactions on Power Systems, Vol. 16, No. 4, pp. 689–694, 2001.

[92] P. Kunder. Power System Stability and Control . McGraw-Hill, 1993.

[93] Y. Susuki, Y. Takama, T. Funaki, and T. Hikihara. Evaluating performance of hybrid-type power system simulator based on transient stability analysis: a dynamical system approach. In 2005 IEEE International Symposium on Circuits and Systems, pp. 3894–3897, 2005.

[94] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. IEEE Std 421.5-2016 (Revision of IEEE Std 421.5-2005), pp. 1–207, 2016.

[95] J. Beerten, S. D’Arco, and J. A. Suul. Identification and Small-Signal Analysis of Interaction Modes in VSC MTDC Systems. IEEE Transactions on Power Delivery, Vol. 31, No. 2, pp. 888–897, 2016.

[96] A. Kunwar, R. Bansal, and O. Krause. Steady-state and transient voltage stability analysis of a weak distribution system with a remote doubly fed induction generator-based wind farm. Energy Science & Engineering, Vol. 2, pp. 188–195, 2014.

[97] M. R. Ansari. Dynamic voltage stability evaluation of power systems Con- sidering industrial electrical loads. Majlesi Journal of Electrical Engineering, Vol. 12, No. 1, pp. 79–86, 2018.

[98] G. M. Huang, L. Zhao, and X. Song. A new bifurcation analysis for power sys- tem dynamic voltage stability studies. In Proc. 2002 IEEE Power Engineering Society Winter Meeting, Vol. 2, pp. 882–887, 2002.

[99] F. Milano. An open source power system analysis toolbox. IEEE Transactions on Power Systems, Vol. 20, No. 3, pp. 1199–1206, 2005.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る