リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「時間分解分光を用いたランタニド錯体のエネルギー移動機構の研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

時間分解分光を用いたランタニド錯体のエネルギー移動機構の研究

宮崎, 栞 MIYAZAKI, Shiori ミヤザキ, シオリ 九州大学

2023.09.25

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Energy Transfer Mechanism in Lanthanide
Complexes Studied by Time-Resolved Spectroscopy
宮崎, 栞

https://hdl.handle.net/2324/7157292
出版情報:Kyushu University, 2023, 博士(理学), 課程博士
バージョン:
権利関係:

(様式3)





:宮崎



論 文 名 :Energy Transfer Mechanism in Lanthanide Complexes Studied by
Time-Resolved Spectroscopy
(時間分解分光を用いたランタニド錯体のエネルギー移動機構の研究)





:甲















三価ランタニド錯体は、金属の種類に依存した高色純度発光を示すことから、有機 EL 素子など
の発光材料としての応用が期待されている。これまで、高効率発光を達成するために、吸光係数の
大きな有機配位子を配位させ、配位子からのエネルギー移動を利用した錯体が開発されてきた。配
位子のエネルギー準位をもとにした配位子設計による発光効率化が進む一方、さらなる高発光効率
を目指すには、その複雑なエネルギー移動機構を詳細に解明し、それに基づいた設計指針を確立す
る必要がある。そこで本研究では、三価ユウロピウム(Eu(III))錯体において、時間分解発光分光
(TR-PL)および過渡吸収分光(TAS)を用いてエネルギー移動機構の解明に取り組んだ。初めに、
配位子励起後 Eu(III)の発光に至るまでのエネルギー移動経路とその時定数を明らかにすることで、
高発光効率のために選択すべき配位子を示した。さらに、実際の応用環境に近いホスト-ゲスト薄膜
おいて、ホスト分子励起後のホスト分子内、ホスト分子間、ホスト-ゲスト分子間にわたる全エネル
ギー移動機構を明らかにし、高効率発光を実現するためのホスト分子の選択指針を提案した。
【Chapter3】ホスフィンオキシド架橋 Eu(III)錯体におけるアン
テナ配位子からランタニドイオンへの二重エネルギー移動経路
Eu(III)錯体配位子は、アンテナ配位子からのエネルギー移動
効率化に加え β-ジケトン配位子設計による振動失活抑制を基準
に開発が進められてきた。ここでは、β-ジケトン(hfa)配位子
をもち、アンテナとしてトリフェニレン(TPH)をもつ Eu(III)
錯体に着目した。この錯体は、TPH をホスフィンオキシド架橋
することで振動失活を抑制している。さらに、架橋により
TPH-Eu(III)間距離があるにも関わらず、効率的なエネルギー移
動を示す。このエネルギー移動の詳細を明らかにするため、TPH
励起後から Eu(III)発光に至るまでの発光過程を TR-PL により逐
次観測した。その結果、配位子からのエネルギー移動経路が二

図 1. 速度方程式に用いた
エネルギー移動モデル.

通り存在することが明らかとなった。速度方程式を用いたシミ
ュレーション解析を行い(図 1)、TPH からエネルギー移動は架橋により遅くなることが明らかとな
った。しかし、そのエネルギー移動効率は高く、失活抑制のためのホスフィンオキシド架橋はエネ
ルギー移動効率に影響を与えず、錯体の高効率化に効果的であることが明らかとなった。

【Chapter4】β-ジケトン配位子を持つ三価 Eu(III)錯体における新規エネルギー移動経路の解明
Chapter3 において、明らかになった二通りのエネルギー移動の
起源を明らかにするため、hfa をアンテナとしてもつ Eu(III)錯体
のエネルギー移動ダイナミクスを調べた。TR-PL、TAS を用いて
配位子励起後の過程を追跡したところ、配位子での速い項間交差
の後、配位子 T1 準位から Eu(III)の 5D2 準位への非常に速いエネル
ギー移動が観測された。これにより、Chapter3 で観測された二通
りのエネルギー移動のうち、速いエネルギー移動過程は hfa に起
因することが明らかとなった(図 2)。Eu(III)の 5 D2 準位へのエネ
ルギー移動はこれまでに観測例はなく、配位子の種類によって
Eu(III)のエネルギー受容準位が異なることを見出した。さらに、
TPH と hfa が同様の T1 エネルギー準位を持つにもかかわらず、異
なる発光準位へエネルギー移動することが分かり、準位間のエネ
ルギー制御のみでは配位子からのエネルギー移動を制御できない
ということが示された。

図 2. トリフェニレン配位
子と β-ジケトン配位子から
の二通りのエネルギー移動
経路の概要図.

【Chapter5】三重項増感を用いたホスト-ゲスト薄膜中の Eu(III)錯体の高効率光捕集
EL 素子などの実用的な発光材料開発のためには薄膜中で
の高効率・強発光の実現が重要である。高効率・強発光実現
のためには、高い吸光係数を有し、Eu(III)へ効率的なエネル
ギー移動が生じる配位子の設計が必要である。しかし、希土
類錯体における適切な配位子合成の難しさ、エネルギー移動
機構の複雑さが課題であった。ここでは、Chapter4 において
発光機構が明らかとなった Eu(III)錯体を様々なホスト分子中
にドープしたホスト-ゲスト薄膜を作製し、評価した。ホスト
分子としてトリアジン誘導体を用いた場合において、高い発
光量子収率と Eu(III)錯体単体の約 400 倍の強発光を達成した

図 3. ホスト-ゲスト増感による
強発光化原理の概念図.

(図 3)。TR-PL、TAS により、ホスト分子励起後から Eu(III)発光に至るまでの過程を解明し、全て
のエネルギー移動過程がほぼ 100%の効率で生じていることを明らかにした。この結果から、Eu(III)
錯体を効率的に光らせるためのホスト分子として、(1)高効率な項間交差、(2)T 1 準位が Eu(III)
錯体配位子の T1 準位と非常に近いこと、が重要であることが示された。
本研究では、TR-PL、TAS を用いて Eu(III)錯体におけるエネルギー移動過程の詳細を明らかにし
た。さらに、これまでその発光機構の詳細が明らかになっていなかった Eu(III)錯体について、二つ
の異なる配位子からのエネルギー移動の経路と時定数を明確にした。また、Eu(III)錯体をドープし
たホスト-ゲスト薄膜を作製し、Eu(III)錯体そのものよりも高い発光量子収率と強発光を達成した。
その発光機構を解明し、ホスト分子の選択指針を提案することができた。本手法は希土類錯体だけ
でなくほかの発光体分子に適応可能であることから、様々な発光材料を用いた薄膜中での高効率発
光の実現に貢献できる。

この論文で使われている画像

参考文献

1. M. A. Baldo, O. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S.

R. Forrest, Highly efficient phosphorescent emission from organic

electroluminescent devices. Nature 395, 151–154 (1998).

2. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic

light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

3. A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J.

Potscavage Jr., C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, C. Adachi, Indication

of current-injection lasing from an organic semiconductor. Appl. Phys. Express 12,

061010 (2019).

4. K. Binnemans, Interpretation of Europium(III) Spectra. Cood. Chem. Rev. 295, 1–

45 (2015).

5. B. R. Judd, Optical Absorption Intensities of Rare-Earth Ions. Phys. Rev. 127, 750

(1962).

6. L. R. Melby, N. J. Rose, E. Abramson, J. C. Caris, Synthesis and Fluorescence of

Some Trivalent Lanthanide Complexes. J. Am. Chem. Soc. 86 (23), 5117–5125

(1964).

7. Y. Hasegawa, Y. Wada, S. Yanagida, Strategies for the design of luminescent

lanthanide(III) complexes and their photonic applications. J. Photochem. Photobiol.

C Rev. 5, 183–202 (2004).

8. J. -C. G. Bünzli, On the design of highly luminescent lanthanide complexes. Cood.

Chem. Rev. 293–294, 19–47 (2015).

9. J. Yuan, K. Matsumoto, Fluorescence Enhancement by Electron-Withdrawing

Groups on -Diketones in Eu(III)-diketonato-topo Ternary Complexes. Analytical

Sciences 12, 31–36, (1996).

10. K.-L. Wong, J.-C. G. Bünzli, P. A. Tanner, Quantum yield and brightness. J.

Lumin. 224, 117256 (2020).

11. Y. Kitagawa, F. Suzue, T. Nakanishi, K. Fushimi, Y. Hasegawa, A highly

luminescent Eu(III) complex based on an electronically isolated aromatic ring

system with ultralong lifetime. Dalton Trans. 47, 7327–7332 (2018).

12. N. Filipescu, W. F. Sager, and F. A. Serafin, Substituent effects on intramolecular

energy transfer. II. Fluorescence spectra of europium and terbium β-diketone

chelates. J. Phys. Chem. 68, 3324–3346 (1964).

13. S. Sato, M. Wada, Relations between Intramolecular Energy Transfer Efficiencies

and Triplet State Energies in Rare Earth β-diketone Chelates. Bull. Chem. Soc. Jpn.

43, 1955–1962 (1970).

107

14. D. B. A. Raj, B. Francis, M. L. P. Reddy, R. R. Butorac, V. M. Lynch, A. H.

Cowley, Highly Luminescent Poly(Methyl Methacrylate)-Incorporated Europium

Complex Supported by a Carbazole-Based Fluorinated β-Diketonate Ligand and a

4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene Oxide Co-Ligand. Inorg. Chem.

49, 19, 9055–9063 (2010).

15. N. B. D. Lima, S. M. C. Gonçalves, S. A. Júnior, A. M. A. Simas, A

Comprehensive Strategy to Boost the Quantum Yield of Luminescence of

Europium Complexes. Sci. Rep. 3, 1–8 (2013).

16. Y. Hasegawa, K. Murakoshi, Y. Wada, S. Yanagida, J. Kim, N. Nakashima, T.

Yamanaka, Enhancement of luminescence of Nd3+ complexes with deuterated

hexafluoroacetylacetonato ligands in organic solvent. Chem. Phys. Lett., 248, 8–12

(1996).

17. K. Miyata, T. Nakagawa, R. Kawakami, Y. Kita, K. Sugimoto, T. Nakashima, T.

Harada, T. Kawai, Y. Hasegawa, Remarkable Luminescence Properties of

Lanthanide Complexes with Asymmetric Dodecahedron Structures. Chem. Eur. J.

17, 521–528 (2011).

18. K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T.

Nagamura, S. Yanagida, Y. Wada, Enhanced Lasing Properties of Dissymmetric

Eu(III) Complex with Bidentate Phosphine Ligands. J. Phys. Chem. A 111, 3029–

3037 (2007).

19. P. A. Tanner, Some misconceptions concerning the electronic spectra of tri-positive

europium and cerium. Chem. Soc. Rev. 42, 5090–5101 (2013).

20. B. G. Vats, S. Kannan, M. Kumar, M. G. B. Drew, Ligand-Field AsymmetryControlled Luminescent Europium (III) and Samarium(III) Tris(β-diketonate)

Complexes of Diphenyl-(2- pyridyl-N-oxide)- Phosphine Oxide. ChemistrySelect 2,

13, 3683–3689 (2017).

21. A. F. Kirby, D. Foster, F. S.Richardson, Comparison of 7FJ←5D0 emission spectra

for Eu(III) in crystalline environments of octahedral, near-octahedral, and trigonal

symmetry. Chem. Phys. Lett. 95, 507–512 (1983).

22. Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, A. Yanagida,

Luminescent Polymer Containing the Eu(III) Complex Having Fast Radiation Rate

and High Emission Quantum Efficiency. J. Phys. Chem. A 107, 1697–1702 (2003).

23. A. Nakajima, T. Nakanishi, Y. Kitagawa, T. Seki, H. Ito, K. Fushimi, Y. Hasegawa,

Hyper-stable organo-EuIII luminophore under high temperature for photo-industrial

application. Sci Rep. 6, 24458 (2016).

108

24. H. Xu, Q. Sun, Z. An, Y. Wei, X. Liu, Electroluminescence from Europium(III)

Complexes. Cood. Chem. Rev. 293-294, 228–249 (2015).

25. L. Wang, Z. Zhao, C. Wei, H. Wei, Z Liu, Z. Bian, C. Huang, Review on the

Electroluminescence Study of Lanthanide Complexes. Adv. Opt. Mater. 7, 1801256

(2019).

26. J. Kido, Y. Okamoto, Organo Lanthanide Metal Complexes for Electroluminescent

Materials. Chem. Rev. 102, 2357 (2002).

27. M. Pietraszkiewicz, M. Maciejczyk, I. D. W. Samuel, S. Zhang, Highly photo- and

electroluminescent 1,3-diketonate Eu(III) complexes with spiro-fluorene-xantphos

dioxide ligands: synthesis and properties. J. Mater. Chem. C 1,8028–8032 (2013).

28. K. Buczko, M. Karbowiak, Co-fluorescence enhanced tuneable emission of

lanthanide β-diketonate complexes in solid thin films. J. Lumin. 136, 130–140

(2013).

29. H. Xu, K. Yin, W. Huang, Comparison of the Electrochemical and Luminescence

Properties of Two Carbazole-Based Phosphine Oxide EuIII Complexes: Effect of

Different Bipolar Ligand Structures. ChemPhysChem. 9, 1752 (2008).

30. J. Wang, C. Han, G. Xie, Y. Wei, Q. Xue, P. Yan, H. Xu. Solution-Processible

Brilliantly Luminescent EuIII Complexes with Host-Featured Phosphine Oxide

Ligands for Monochromic Red-Light-Emitting Diodes. Chem.-Eur. J. 20, 11137–

11148 (2014).

31. D. B. A. Raj, S. Bijua, M. L. P. Reddy, 4,4,5,5,5-Pentafluoro-1-(9H-fluoren-2-yl)1,3-pentanedione complex of Eu3+ with 4,5-bis(diphenylphosphino)-9,9dimethylxanthene oxide as a promising light-conversion molecular device. Dalton

Trans. 7519–7528 (2009).

32. H. Xu, L.-H. Wang, X.-H. Zhu, K. Yin, G.-Y. Zhong, X.-Y. Hou, and W. Huang,

Application of Chelate Phosphine Oxide Ligand in EuIII Complex with Mezzo

Triplet Energy Level, Highly Efficient Photoluminescent, and Electroluminescent

Performances. J. Phys. Chem. 110, 3023–3029 (2006).

33. H. Xu, K. Yin, W. Huang, Novel Light-Emitting Ternary Eu3+ Complexes Based on

Multifunctional Bidentate Aryl Phosphine Oxide Derivatives: Tuning

Photophysical and Electrochemical Properties toward Bright Electroluminescence.

J. Phys. Chem. C 114, 1674–1683 (2010).

34. M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubisd, J.

Kankarea, Correlation between the Lowest Triplet State Energy Level of the Ligand

and Lanthanide(III) Luminescence Quantum Yield. J. Lumin. 75, 149–169 (1997).

109

35. S. Miyazaki, K. Miyata, H. Sakamoto, F. Suzue, Y. Kitagawa, Y. Hasegawa, K.

Onda, Dual Energy Transfer Pathways from an Antenna Ligand to Lanthanide Ion

in Trivalent Europium Complexes with Phosphine-Oxide Bridges. J. Phys. Chem. A

124, 6601–6606 (2020).

36. M. W. Mara, D. S. Tatum, A. March, G. Doumy, E. G. Moore, K. N. Raymond,

Energy Transfer from Antenna Ligand to Europium(III) Followed Using Ultrafast

Optical and X-Ray Spectroscopy. J. Am. Chem. Soc. 141, 11071–11081 (2019).

37. C. Yang, L.-M. Fu, Y. Wang, J.-P. Zhang, W.-T. Wong, X-C. Ai, Y.-F. Qiao, B. S.

Zou, L.-L. Gui, A Highly Luminescent Europium Complex Showing Visible-LightSensitized Red Emission: Direct Observation of the Singlet Pathway. Angew.

Chem., Int. Ed. 43, 5010–5013 (2004).

38. E. Kasprzycka, V. A. Trush, V. M. Amirkhanov, L. Jerzykiewicz, O. L. Malta, J.

Legendziewicz, P. Gawryszewska, Contribution of Energy Transfer from the

Singlet State to the Sensitization of Eu3+ and Tb3+ Luminescence. Chem.-Eur. J. 23,

1318–1330 (2017).

39. M. Saigo, Y. Shimoda, T. Ehara, T. Ryu, K. Miyata, K. Onda, Characterization of

Excited States in a Multiple-Resonance-Type Thermally Activated Delayed

Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy. Bull. Chem.

Soc. Jpn. 95, 381–388 (2022).

40. A. Skumanich, M. Jurich, J. D. Swalen, Absorption and scattering in nonlinear

optical polymeric systems. Appl. Phys. Lett. 62, 446 (1993).

41. H. Kataoka, T. Kitano, T. Takizawa, Y. Hirai, T. Nakanishi, Y. Hasegawa, Photoand thermo-stable luminescent beads composed of Eu(III) complexes and PMMA

for enhancement of silicon solar cell efficiency. J. Alloys Compd. 601, 293–297

(2014).

42. J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen, I. H. M. van Stokkum,

Glotaran: A Java-Based Graphical User Interface for the R Package TIMP. J. Stat.

Softw. 49, 3, 1–22 (2012).

43. J. Zhao, W. Wu, J. Sun, S. Guo, Triplet photosensitizers: from molecular design to

applications. Chem. Soc. Rev. 42, 5323–5351 (2013).

44. Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X.

Liu, W. Huang, Stabilizing triplet excited states for ultralong organic

phosphorescence. Nat. Mater. 14, 685–690 (2015).

45. M. H. V. Werts, R. T. F. Jukes, J. W. Verhoeven, The emission spectrum and the

radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem.

Phys. 4, 1542–1548 (2002).

110

46. C. -G. Ma, M. G. Brik, D.-X. Liu, B. Feng, Y. Tian, A. Suchocki, Energy level

schemes of fN electronic configurations for the di-, tri-, and tetravalent lanthanides

and actinides in a free state. J. Lumin. 170, 369–374 (2016).

111

Chapter 6. Summary and perspective

112

6-1 Summary

The author employed TR-PL and TAS to investigate the energy transfer

mechanisms in Eu(III) complexes. The goal was to gain a better understanding of the

emission mechanism and facilitate materials development.

In Chapter 1 and 2, the author explained the background and experimental

methods in this thesis, respectively.

In Chapter 3, the author conducted an investigation into the energy transfer

processes in the Eu(hfa)3(DPPTO)2 complex using TR-PL. In addition to the conventional

energy transfer pathway through the T1 state of the ligands, a fast energy transfer pathway

from the singlet excited states of the ligands to the 5D1 state of Eu(III) was discovered.

This dual energy transfer mechanism contributes to the high photoluminescence quantum

yield observed in the complex, offering important insights for the design strategies of

luminescent complexes.

In Chapter 4, the author explores the energy transfer mechanism in the

Eu(hfa)3(TPPO)2 complex, utilizing TR-PL and fs-TAS. The experimental results

demonstrate nearly unity efficiency of energy transfer from the T1 state of β-diketonate

ligands to the Eu(III) ions, unveiling a novel pathway to the 5D2 state of the Eu(III) ion.

These findings have important implications for designing efficient luminescent Eu(III)

complexes and advancing the development of lanthanide-based light-emitting materials.

In Chapter 5, the author investigates the enhancement of photoluminescence

intensity through sensitization using a host-guest system. Specifically, they explore a

system composed of triazine-based host molecules and Eu(hfa)3(TPPO)2. By conducting

TR-PL and fs-TAS measurements, the author reveals an energy transfer mechanism from

the host molecules to the Eu(III) ions, occurring via triplet states over several molecules

113

with an impressive efficiency of nearly 100%. This discovery enables efficient light

harvesting in Eu(III) complexes and provides a simple solution-based fabrication process,

promising advancements in light-emitting applications.

In these studies, TR-PL and fs-TAS were employed to investigate the energy

transfer mechanisms in Eu(III) complexes. This research not only enhanced our

understanding of the emission mechanism but also played a crucial role in advancing

materials development in this field.

6-2 Future perspective

Based on the findings of this research, there are several potential directions for

future work in the field of Eu(III) complexes and their energy transfer mechanisms. One

promising avenue is the application of these complexes in organic light-emitting diodes

(OLEDs). By utilizing the knowledge gained about the energy transfer pathways and

efficiency, it becomes possible to design and optimize Eu(III)-based OLEDs with

enhanced performance and efficiency. This could lead to the development of more

efficient and vibrant displays, lighting, and other optoelectronic devices.

Additionally, further investigations can be conducted to explore the potential of

other antenna ligands and coordination structures for Eu(III) complexes. By studying

different ligand systems and their energy transfer mechanisms, it is possible to discover

novel pathways and improve the overall efficiency of energy transfer in these complexes.

This would open up new possibilities for the design and synthesis of luminescent Eu(III)

complexes with tailored properties for various applications.

Moreover, the study of host-guest systems, as demonstrated in Chapter 5, holds

promise for enhancing the photoluminescence intensity in Eu(III) complexes. Future

114

research can focus on developing new host molecules and optimizing their interaction

with Eu(III) ions to achieve even higher energy transfer efficiencies. This could lead to

the creation of highly efficient light-harvesting systems that can be utilized in a wide

range of applications.

Overall, the investigations presented in this thesis provide a solid foundation for

future research in the field of Eu(III) complexes. By further exploring their energy transfer

mechanisms and applying the gained knowledge to practical applications such as OLEDs,

significant advancements can be made in the development of luminescent materials and

optoelectronic devices.

115

Publication lists

Original papers

1. “Dual Energy Transfer Pathways from an Antenna Ligand to Lanthanide Ion in

Trivalent Europium Complexes with Phosphine-Oxide Bridges”

Shiori Miyazaki, Kiyoshi Miyata, Haruna Sakamoto, Fumiya Suzue, Yuichi

Kitagawa, Yasuchika Hasegawa, and Ken Onda

The Journal of Physical Chemistry A 2020, 124, 33, 6601–6606.

2. “Novel Energy Transfer Pathway in Trivalent Europium Complexes with βDiketonate Ligands”

Shiori Miyazaki, Kiyoshi Miyata, Yuichi Kitagawa, Yasuchika Hasegawa and Ken

Onda

(Manuscript in preparation)

3. “Highly Efficient Light Harvesting of a Eu(III) Complex in a Host–guest Film by

Triplet Sensitization”

Shiori Miyazaki, Kenichi Goushi, Yuichi Kitagawa, Yasuchika Hasegawa,

Chihaya Adachi, Kiyoshi Miyata and Ken Onda

Chemical Science 2023, 14, 6867–6875.

Joint papers

1. “Coordination Geometrical Effect on Ligand-to-Metal Charge Transfer-Dependent

Energy Transfer Processes of Luminescent Eu(III) Complexes”

Pedro Paulo Ferreira da Rosa, Shiori Miyazaki, Haruna Sakamoto, Yuichi

Kitagawa, Kiyoshi Miyata, Tomoko Akama, Masato Kobayashi, Koji Fushimi, Ken

Onda, Tetsuya Taketsugu, and Yasuchika Hasegawa

The Journal of Physical Chemistry A 2021, 125, 1, 209–217.

116

Acknowledgments

This doctoral thesis is the summary of the author’s studies conducted under the

supervision of Professor Ken Onda at the Department of Chemistry, Graduated School of

Science, Kyushu University, from April 2018 to August 2023.

The author would like to express my deepest gratitude to Professor Ken Onda

for supervising this thesis, providing an excellent research environment, helpful

discussion, and supporting all my works. The author would also like to express my deep

appreciation to Associate Professor Kiyoshi Miyata for his insightful comments and

guidance for my work and life.

The author would like to appreciate Professor Yasuchika Hasegawa and

Associate Professor Yuichi Kitagawa at Hokkaido University for providing the samples

and valuable discussions.

The author would like to appreciate Professor Chihaya Adachi and Assistant

Professor Kenichi Goushi at Center for Organic Photonics and Electronics Research

(OPERA), Kyushu University, for valuable discussions.

The author would like to thank all the members of Onda laboratory for their kind

support not only for my work but also for his daily life. The author also would like to

thank all the collaborators.

The author also thanks Japan Society for the Promotion of Science for the

financial support of the Research Fellowship for Young Scientists.

Finally, the author would like to express his gratitude to his family for always

supporting her during her long student life.

Shiori Miyazaki

August 2023

117

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る