リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Generation of biohybrid implants using a multipotent human periodontal ligament cell line and bioactive core materials」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Generation of biohybrid implants using a multipotent human periodontal ligament cell line and bioactive core materials

Ono, Taiga 小野, 太雅 オノ, タイガ Tomokiyo, Atsushi 友清, 淳 トモキヨ, アツシ Ipposhi, Keita 一法師, 啓太 イッポウシ, ケイタ Yamashita, Kozue 山下, 梢 ヤマシタ, コズエ Alhasan, M. Anas Miyazaki, Yudai ミヤザキ, ユウダイ Kunitomi, Yoshihiro クニトモ, ヨシヒロ Tsuchiya, Akira 土谷, 享 ツチヤ, アキラ Ishikawa, Kunio 石川, 邦夫 イシカワ, クニオ Maeda, Hidefumi 前田, 英史 マエダ, ヒデフミ 九州大学

2021.02.19

概要

We aimed to generate periodontal ligament (PDL) tissue-like structures from a multipotent human PDL cell line using three-dimensional (3D) bioprinting technology and to incorporate these structures wi

参考文献

Alvarez-Pérez, M. A., Narayanan, S., Zeichner-David, M., Rodríguez Carmona, B., &

Arzate, H. (2006). Molecular cloning, expression and immunolocalization of a

novel human cementum-derived protein (CP-23). Bone, 38(3), 409-419.

doi:10.1016/j.bone.2005.09.009

Arai, K., Murata, D., Verissimo, A. R., Mukae, Y., Itoh, M., Nakamura, A., . . .

Nakayama, K. (2018). Fabrication of scaffold-free tubular cardiac constructs

using a Bio-3D printer. PLoS One, 13(12), e0209162.

doi:10.1371/journal.pone.0209162

Brånemark, P. I., Hansson, B. O., Adell, R., Breine, U., Lindström, J., Hallén, O., &

Ohman, A. (1977). Osseointegrated implants in the treatment of the edentulous

jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl, 16,

1-132.

Carnes, D. L., Maeder, C. L., & Graves, D. T. (1997). Cells with osteoblastic

phenotypes can be explanted from human gingiva and periodontal ligament. J

Periodontol, 68(7), 701-707. doi:10.1902/jop.1997.68.7.701

Chen, X., Liu, Y., Miao, L., Wang, Y., Ren, S., Yang, X., . . . Sun, W. (2016).

Controlled release of recombinant human cementum protein 1 from electrospun

multiphasic scaffold for cementum regeneration. Int J Nanomedicine, 11, 31453158. doi:10.2147/ijn.S104324

Cheng, N. C., Chen, S. Y., Li, J. R., & Young, T. H. (2013). Short-term spheroid

formation enhances the regenerative capacity of adipose-derived stem cells by

promoting stemness, angiogenesis, and chemotaxis. Stem Cells Transl Med,

2(8), 584-594. doi:10.5966/sctm.2013-0007

Chiarelli, N., Carini, G., Zoppi, N., Ritelli, M., & Colombi, M. (2018). Transcriptome

analysis of skin fibroblasts with dominant negative COL3A1 mutations provides

molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome.

PLoS One, 13(1), e0191220. doi:10.1371/journal.pone.0191220

Cooley, D. R., Van Dellen, A. F., Burgess, J. O., & Windeler, A. S. (1992). The

advantages of coated titanium implants prepared by radiofrequency sputtering

from hydroxyapatite. J Prosthet Dent, 67(1), 93-100. doi:10.1016/00223913(92)90057-h

Craig, R. G., & LeGeros, R. Z. (1999). Early events associated with periodontal

connective tissue attachment formation on titanium and hydroxyapatite surfaces.

J Biomed Mater Res, 47(4), 585-594. doi:10.1002/(sici)10974636(19991215)47:4<585::aid-jbm16>3.0.co;2-o

Falkenbach, A., & Herold, M. (2002). Osteocalcin: a marker of disease activity in

ankylosing spondylitis? Ann Rheum Dis, 61(1), 92. doi:10.1136/ard.61.1.92

Heo, Y. Y., Um, S., Kim, S. K., Park, J. M., & Seo, B. M. (2011). Responses of

periodontal ligament stem cells on various titanium surfaces. Oral Dis, 17(3),

320-327. doi:10.1111/j.1601-0825.2010.01728.x

Hoz, L., Romo, E., Zeichner-David, M., Sanz, M., Nuñez, J., Gaitán, L., . . . Arzate, H.

(2012). Cementum protein 1 (CEMP1) induces differentiation by human

periodontal ligament cells under three-dimensional culture conditions. Cell Biol

Int, 36(2), 129-136. doi:10.1042/cbi20110168

Huang, G. S., Dai, L. G., Yen, B. L., & Hsu, S. H. (2011). Spheroid formation of

mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes.

Biomaterials, 32(29), 6929-6945. doi:10.1016/j.biomaterials.2011.05.092

Itoh, M., Mukae, Y., Kitsuka, T., Arai, K., Nakamura, A., Uchihashi, K., . . .

Kobayashi, E. (2019). Development of an immunodeficient pig model allowing

long-term accommodation of artificial human vascular tubes. Nat Commun,

10(1), 2244. doi:10.1038/s41467-019-10107-1

Kaku, M., & Yamauchi, M. (2014). Mechano-regulation of collagen biosynthesis in

periodontal ligament. J Prosthodont Res, 58(4), 193-207.

doi:10.1016/j.jpor.2014.08.003

Lee, D. J., Lee, J. M., Kim, E. J., Takata, T., Abiko, Y., Okano, T., . . . Jung, H. S.

(2017). Bio-implant as a novel restoration for tooth loss. Sci Rep, 7(1), 7414.

doi:10.1038/s41598-017-07819-z

Lin, Y., Gallucci, G. O., Buser, D., Bosshardt, D., Belser, U. C., & Yelick, P. C. (2011).

Bioengineered periodontal tissue formed on titanium dental implants. J Dent

Res, 90(2), 251-256. doi:10.1177/0022034510384872

Liu, X., Wu, H., Byrne, M., Krane, S., & Jaenisch, R. (1997). Type III collagen is

crucial for collagen I fibrillogenesis and for normal cardiovascular development.

Proc Natl Acad Sci U S A, 94(5), 1852-1856. doi:10.1073/pnas.94.5.1852

Ma, L., Wang, X., Liu, H., Jiang, C., Liao, H., Xu, S., . . . Cao, Z. (2019). CXXC5

Mediates P. gingivalis-suppressed Cementoblast Functions Partially via MAPK

Signaling Network. Int J Biol Sci, 15(8), 1685-1695. doi:10.7150/ijbs.35419

Moldovan, L., Barnard, A., Gil, C. H., Lin, Y., Grant, M. B., Yoder, M. C., . . .

Moldovan, N. I. (2017). iPSC-Derived Vascular Cell Spheroids as Building

Blocks for Scaffold-Free Biofabrication. Biotechnol J, 12(12).

doi:10.1002/biot.201700444

Moldovan, N. I. (2018). Progress in scaffold-free bioprinting for cardiovascular

medicine. J Cell Mol Med, 22(6), 2964-2969. doi:10.1111/jcmm.13598

Munar, M. L., Udoh, K., Ishikawa, K., Matsuya, S., & Nakagawa, M. (2006). Effects of

sintering temperature over 1,300 degrees C on the physical and compositional

properties of porous hydroxyapatite foam. Dent Mater J, 25(1), 51-58.

doi:10.4012/dmj.25.51

Nemoto, T., Kajiya, H., Tsuzuki, T., Takahashi, Y., & Okabe, K. (2010). Differential

induction of collagens by mechanical stress in human periodontal ligament cells.

Arch Oral Biol, 55(12), 981-987. doi:10.1016/j.archoralbio.2010.08.004

Nishi, M., Matsumoto, R., Dong, J., & Uemura, T. (2013). Engineered bone tissue

associated with vascularization utilizing a rotating wall vessel bioreactor. J

Biomed Mater Res A, 101(2), 421-427. doi:10.1002/jbm.a.34340

Ong, C. S., Fukunishi, T., Zhang, H., Huang, C. Y., Nashed, A., Blazeski, A., . . .

Hibino, N. (2017). Biomaterial-Free Three-Dimensional Bioprinting of Cardiac

Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes.

Sci Rep, 7(1), 4566. doi:10.1038/s41598-017-05018-4

Qiu, J., Wang, X., Zhou, H., Zhang, C., Wang, Y., Huang, J., . . . Song, A. (2020).

Enhancement of periodontal tissue regeneration by conditioned media from

gingiva-derived or periodontal ligament-derived mesenchymal stem cells: a

comparative study in rats. Stem Cell Res Ther, 11(1), 42. doi:10.1186/s13287019-1546-9

Rumiński, S., Kalaszczyńska, I., Długosz, A., & Lewandowska-Szumieł, M. (2019).

Osteogenic differentiation of human adipose-derived stem cells in 3D conditions

- comparison of spheroids and polystyrene scaffolds. Eur Cell Mater, 37, 382401. doi:10.22203/eCM.v037a23

Seo, B. M., Miura, M., Gronthos, S., Bartold, P. M., Batouli, S., Brahim, J., . . . Shi, S.

(2004). Investigation of multipotent postnatal stem cells from human periodontal

ligament. Lancet, 364(9429), 149-155. doi:10.1016/s0140-6736(04)16627-0

Shimono, M., Ishikawa, T., Ishikawa, H., Matsuzaki, H., Hashimoto, S., Muramatsu,

T., . . . Inoue, T. (2003). Regulatory mechanisms of periodontal regeneration.

Microsc Res Tech, 60(5), 491-502. doi:10.1002/jemt.10290

Shishido, A., Mori, S., Yokoyama, Y., Hamada, Y., Minami, K., Qian, Y., . . .

Yamamoto, H. (2018). Mesothelial cells facilitate cancer stem‑like properties in

spheroids of ovarian cancer cells. Oncol Rep, 40(4), 2105-2114.

doi:10.3892/or.2018.6605

Takeuchi, R., Kuruma, Y., Sekine, H., Dobashi, I., Yamato, M., Umezu, M., . . . Okano,

T. (2016). In vivo vascularization of cell sheets provided better long-term tissue

survival than injection of cell suspension. J Tissue Eng Regen Med, 10(8), 700710. doi:10.1002/term.1854

Thomson, T. S., Berry, J. E., Somerman, M. J., & Kirkwood, K. L. (2003).

Cementoblasts maintain expression of osteocalcin in the presence of mineral

trioxide aggregate. J Endod, 29(6), 407-412. doi:10.1097/00004770-20030600000007

Tomokiyo, A., Maeda, H., Fujii, S., Wada, N., Shima, K., & Akamine, A. (2008).

Development of a multipotent clonal human periodontal ligament cell line.

Differentiation, 76(4), 337-347. doi:10.1111/j.1432-0436.2007.00233.x

Trubiani, O., Marconi, G. D., Pierdomenico, S. D., Piattelli, A., Diomede, F., &

Pizzicannella, J. (2019). Human Oral Stem Cells, Biomaterials and Extracellular

Vesicles: A Promising Tool in Bone Tissue Repair. Int J Mol Sci, 20(20).

doi:10.3390/ijms20204987

Trubiani, O., Pizzicannella, J., Caputi, S., Marchisio, M., Mazzon, E., Paganelli, R., . . .

Diomede, F. (2019). Periodontal Ligament Stem Cells: Current Knowledge and

Future Perspectives. Stem Cells Dev, 28(15), 995-1003.

doi:10.1089/scd.2019.0025

Tsuruga, E., Takita, H., Itoh, H., Wakisaka, Y., & Kuboki, Y. (1997). Pore size of

porous hydroxyapatite as the cell-substratum controls BMP-induced

osteogenesis. J Biochem, 121(2), 317-324.

doi:10.1093/oxfordjournals.jbchem.a021589

Washio, K., Tsutsumi, Y., Tsumanuma, Y., Yano, K., Srithanyarat, S. S., Takagi,

R., . . . Ishikawa, I. (2018). In Vivo Periodontium Formation Around Titanium

Implants Using Periodontal Ligament Cell Sheet. Tissue Eng Part A, 24(15-16),

1273-1282. doi:10.1089/ten.TEA.2017.0405

Whittemore, E. R., Loo, D. T., & Cotman, C. W. (1994). Exposure to hydrogen

peroxide induces cell death via apoptosis in cultured rat cortical neurons.

Neuroreport, 5(12), 1485-1488. doi:10.1097/00001756-199407000-00019

Yurie, H., Ikeguchi, R., Aoyama, T., Kaizawa, Y., Tajino, J., Ito, A., . . . Matsuda, S.

(2017). The efficacy of a scaffold-free Bio 3D conduit developed from human

fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PLoS

One, 12(2), e0171448. doi:10.1371/journal.pone.0171448

Figures

Figure 1. Morphological analysis of single cellular spheroids derived from cell line

1-17 cells

(A) Phase-contrast microscopic images of line 1-17 cell-derived single cellular

spheroids. Line 1-17 cells (2.5 × 104 cells/well) were seeded on 96-U-well plates and

cultured in control medium for 1 day (I), 2 days (II), 3 days (III), and 4 days (IV).

Representative images are shown. Scale bars = 200 μm. (B) Diameter (I), roundness

(II), and surface roughness (III) of single cellular spheroids incubated for 1, 2, 3, and 4

days. Values are means ± SD from three independent experiments. **p < 0.01 vs. 1 day,

††

p < 0.01 (n = 96). n.s., not significant.

Figure 2. Three-dimensional (3D) tubular structure formation using singular

cellular spheroids (SCSs)

(A-F) Schematic images of 3D tubular structure formation. (A) Spheroids cultured in a

96-U-well plate are collected with a fine suction nozzle. (B) The spheroids are placed

onto an appropriate needle array according to a 3D design composed with the needle

array software. (C) The 3D-bioprinted spheroids are cultured on the needle array for

structural maturation. (D) After culture, the spheroids integrate with one another and

generate a cell-derived 3D tubular structure. Top (E) and side (F) images of the

software-composed 3D design are shown. (G, H) Representative images of the 3Dprinted SCSs on the needle array. Top (G) and side (H) images are shown. Scale bars =

1 mm.

Figure 3. Representative images of structures and evaluation of core materials

(A) Representative side (I) and top (II) images of spheroids incubated for 10 days on the

needle array. Top view of a 3D tubular structure (3DTB) just after being pulled out from

the needle array (III) and after a further 7 days of culture on a 10-cm dish without a core

material (WOC; IV). (B) Representative side (I) and top (II) images of a cylindrical

hydroxyapatite core and a top view of a 3DTB after 7 days of culture with a

hydroxyapatite core (HAC; III). (C) Representative side (I) and top (II) images of a

cylindrical titanium core and a top view of a 3DTB after 7 days of culture with a

titanium core (TIC; III). Scale bars = 1 nm. (D) X-ray diffractometer patterns of

hydroxyapatite powder (I) and a hydroxyapatite core (II). (E) Representative scanning

electron micrographs of a titanium core (I, II) and a hydroxyapatite core (III, IV) at

magnifications of ×200 and ×1,600. II and IV are highly magnified views of the boxed

areas in I and III, respectively.

Figure 4. Morphological and live cell distribution analyses in WOC, TIC, and

HAC

(A, B) Images of hematoxylin and eosin (A) and NucSpot (B) staining in WOC (I, II),

TIC (III, IV), and HAC (V, VI). II, IV, and VI are highly magnified views of the boxed

areas in I, III, and V, respectively. Experiments were performed in duplicate.

Representative images are shown. Green indicates NucSpot-positive living cells. Scale

bars = 500 μm. WOC: 3D tubular structure without a core material; TIC: 3D tubular

structure with a titanium core; HAC: 3D tubular structure with a hydroxyapatite core.

Figure 5. Picrosirius red and Masson’s trichrome staining in WOC, TIC, and HAC

(A, B) Images of picrosirius red (A) and Masson’s trichrome (B) staining in WOC (I,

II), TIC (III, IV), and HAC (V, VI). II, IV, and VI are highly magnified views of the

boxed areas in I, III, and V, respectively. Experiments were performed in duplicate.

Representative images are shown. After picrosirius red staining, a positive reaction was

confirmed in all areas of WOC, TIC, and HAC. After Masson’s trichrome staining,

blue-stained matrices were broadly distributed in WOC, TIC, and HAC. Red-stained

structures were confirmed in the outer areas. Scale bars = 500 μm. WOC: 3D tubular

structure without a core material; TIC: 3D tubular structure with a titanium core; HAC:

3D tubular structure with a hydroxyapatite core.

Figure 6. Gene expression analysis in line 1-17 cells, WOC, TIC, and HAC

PDL (COL3A1, PLAP1, and SDC1)-, angiogenesis (VEGFA and HGF)-, cementum

(CEMP1)-, and bone (OCN)-related gene expression in monolayer-cultured line 1-17

cells, WOC, TIC, and HAC. These gene expression levels were compared with realtime RT-PCR findings. Values are means ± SD from three independent experiments.

Line 1-17: monolayer-cultured line 1-17 cells; WOC: 3D tubular structure without a

core material; TIC: 3D tubular structure with a titanium core; HAC: 3D tubular

structure with a hydroxyapatite core. *p < 0.05, **p < 0.01 vs. line 1-17 cells (n = 3).

Figure 7. Immunohistochemical analysis for HGF, SDC1, and VEGF expression in

WOC, TIC, and HAC

(A-D) Images of immunohistochemical staining with anti-HGF (A), anti-SDC1 (B),

anti-VEGF (C), and rabbit control IgG (D) antibodies in WOC (I, II), TIC (III, IV), and

HAC (V, VI). II, IV, and VI are highly magnified views of the boxed areas in I, III, and

V, respectively. Brown indicates the presence of the target antigens. Nuclei were stained

with hematoxylin. No positive staining was observed in tissues incubated with rabbit

control IgG. Scale bars = 500 μm. WOC: 3D tubular structure without a core material;

TIC: 3D tubular structure with a titanium core; HAC: 3D tubular structure with a

hydroxyapatite core.

Figure 8. Immunofluorescence histochemical analysis for CEMP1 and OCN

expression in WOC, TIC, and HAC

(A-C) Images of immunofluorescence histochemical staining with anti-CEMP1 (A),

anti-OCN (B), and rabbit control IgG (C) antibodies in WOC (I–III), TIC (IV–VI), and

HAC (VII–IX). Green indicates the presence of the target antigens. Nuclei were stained

with DAPI. No positive staining was observed in tissues incubated with rabbit control

IgG. The strong green color in the middle of HAC indicates autofluorescence of the

residual hydroxyapatite core. Scale bars = 500 μm. WOC: 3D tubular structure without

a core material; TIC: 3D tubular structure with a titanium core; HAC: 3D tubular

structure with a hydroxyapatite core.

Figure S1. Live cell distribution analysis in monolayer-cultured line 1-17 cells

(A, B) Images of NucSpot staining in monolayer-cultured line 1-17 cells. The cells were

treated with phosphate-buffered saline (PBS) (A) or 3% H2O2 in PBS (B) for 10 min.

Experiments were performed in duplicate. Representative images are shown. Green

indicates NucSpot-positive living cells. Scale bars = 300 μm.

Figure S2. PDL-related collagen gene expression analysis in line 1-17 cells, WOC,

TIC, and HAC

PDL-related collagen gene (COL1A1 and COL12A1) expression in monolayer-cultured

line 1-17 cells, WOC, TIC, and HAC is shown. Gene expression levels were compared

with real-time RT-PCR findings. Values are means ± SD from three independent

experiments. PDL: periodontal ligament; WOC: 3D tubular structure without a core

material; TIC: 3D tubular structure with a titanium core; HAC: 3D tubular structure

with a hydroxyapatite core.

Figure S3. Highly magnified images of immunofluorescence histochemical analysis

for CEMP1 expression in WOC, TIC, and HAC

(A-C) Highly magnified images of Figure 8A. They are images of immunofluorescence

histochemical staining with anti-CEMP1 in WOC (I–III), TIC (IV–VI), and HAC (VII–

IX). The highly magnified images (B, C) correspond to the outermost area (B) and

middle lamella (C) of the three-dimensional structure (A), respectively. Green indicates

the presence of the target antigens. Nuclei were stained with DAPI. The strong green

color in the middle of HAC indicates autofluorescence of the residual hydroxyapatite

core. Scale bars = 250 μm. WOC: 3D tubular structure without a core material; TIC: 3D

tubular structure with a titanium core; HAC: 3D tubular structure with a hydroxyapatite

core.

Figure S4. Highly magnified images of immunofluorescence histochemical analysis

for OCN expression in WOC, TIC, and HAC

(A-C) Highly magnified images of Figure 8B. They are images of immunofluorescence

histochemical staining with anti-OCN in WOC (I–III), TIC (IV–VI), and HAC (VII–

IX). The highly magnified images (B, C) correspond to the outermost area (B) and

middle lamella (C) of the three-dimensional structure (A), respectively. Green indicates

the presence of the target antigens. Nuclei were stained with DAPI. The strong green

color in the middle of HAC indicates autofluorescence of the residual hydroxyapatite

core. Scale bars = 250 μm. WOC: 3D tubular structure without a core material; TIC: 3D

tubular structure with a titanium core; HAC: 3D tubular structure with a hydroxyapatite

core.

Figure S5. Immuno-fluorescent histochemical analysis for OSX expression in

WOC, TIC and HAC

(A-C) Images of immunofluorescence histochemical staining with anti-OSX antibodies

in WOC (I–III), TIC (IV–VI), and HAC (VII–IX). B and C are highly magnified views

of the outer and inner boxed areas in A, respectively. Highly magnified images with

Roman numerals correspond to each original image. Green indicates the presence of the

target antigens. Nuclei were stained with DAPI. The strong green color in the middle of

HAC indicates autofluorescence of the residual hydroxyapatite core. Scale bars = 250

μm. WOC: 3D tubular structure without a core material; TIC: 3D tubular structure with

a titanium core; HAC: 3D tubular structure with a hydroxyapatite core.

Figure S6. Immuno-fluorescent histochemical analysis for BMP2 expression in

WOC, TIC and HAC

(A-C) Images of immunofluorescence histochemical staining with anti-BMP2

antibodies in WOC (I–III), TIC (IV–VI), and HAC (VII–IX). B and C are highly

magnified views of the outer and inner boxed areas in A, respectively. Highly magnified

images with Roman numerals correspond to each original image. Green indicates the

presence of the target antigens. Nuclei were stained with DAPI. The strong green color

in the middle of HAC indicates autofluorescence of the residual hydroxyapatite core.

Scale bars = 250 μm. WOC: 3D tubular structure without a core material; TIC: 3D

tubular structure with a titanium core; HAC: 3D tubular structure with a hydroxyapatite

core.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る