リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「熱水域掘削コアの局所Pb同位体分析:海底熱水鉱床における起源物質の解明に向けて」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

熱水域掘削コアの局所Pb同位体分析:海底熱水鉱床における起源物質の解明に向けて

戸塚, 修平 TOTSUKA, Shuhei トツカ, シュウヘイ 九州大学

2020.03.23

概要

海底熱水鉱床における起源物質の解明に向けて,沖縄トラフの海底熱水域で採取された掘削コア試料を用いて局所測定法による鉛 (Pb)同位体分析を行った.第1部では2つの熱水域を対象にした解析により手法の有用性を検証し,第2部ではこれを応用して海底熱水鉱床と過去の海底熱水鉱床である黒鉱鉱床との比較を行った.

第1部 トレーサーとしてのPb (鉛)同位体比の有用性
熱水鉱床の金属元素の起源推定のツールとして,鉱石のPb同位体比を解析する研究が伝統的に行われ,海底熱水鉱床においても広く適用されてきた.沖縄トラフの熱水域を対象とした研究では Halbach et al. (1997)が,Pbの起源として熱水域を取り巻く火山岩に加えて陸源堆積物の寄与があることを報告している.起源物質の詳細な解明は,鉱床形成モデルを考える上で重要な情報であるが,沖縄トラフの熱水域ではこの研究以降詳細な検討はされてこなかった.本研究では,迅速測定で多数の試料を扱える利点のある局所分析LA-MC-ICP-MS法を用いてPb同位体比測定を行い,その結果から起源物質を推定した.

研究対象とした熱水域は中部沖縄トラフに位置する伊平屋北海丘熱水域と伊是名海穴Hakureiサイトである.2つの熱水域では「ちきゅう」を用いた科学掘削が行われ,海底下深度200mまでの掘削コアが得られた.掘削コア試料の記載から,伊平屋北海丘熱水域の周辺は主に軽石に覆われ,伊是名海穴では軽石と半遠洋性堆積物の互層が見られることが明らかになった.

2つの熱水域の鉱石のPb同位体比は明瞭に異なり,起源物質として火山岩と堆積物の寄与の割合が異なることが示唆された (図1).軽石に覆われている伊平屋北海丘熱水域では火山岩寄りのPb同位体比,軽石と半遠洋性堆積物に覆われている伊是名海穴 Hakurei サイトでは堆積物と火山岩の間のPb同位体比が得られた.よって熱水域間のPb同位体比の違いは熱水循環経路になっている周辺の地質の違いを反映していると考えられる.また局所分析を行う過程で,Pb同位体比と鉱物組織・組み合わせとの関係を詳細に検討したが,同一試料中での差異は認められなかった.さらに同一掘削孔から得られた掘削コアにおいても鉛直方向におけるPb同位体比の差異がなく,逆に掘削地点間のわずかなPb同位体比の差異を確認することができた.掘削地点周辺の地質環境の違いを考慮すると,熱水域内で見られたPb同位体比の差異も,熱水循環経路の地質の差異を反映すると考えられた.このような詳細なPb同位体比の差異を確認できたのは,LA 法により多数のデータを迅速に得られる利点によるものであり,この測定で得られるPb同位体比は,起源物質の微妙な差異も鋭敏に検出する優秀なトレーサーである.

第2部 海底熱水鉱床と黒鉱鉱床の起源物質
中部沖縄トラフに位置する熱水域であるごんどうサイトは,周囲を軽石等の珪長質な火山岩に覆われている.ごんどうサイトにおいて「新潮丸」の海底着座型掘削装置によって行われた科学掘削で,海底熱水鉱床で初めて黒鉱/黄鉱というタイプの異なる鉱石の分布が確認された.そこでごんどうサイトの黒鉱/黄鉱についてLA法によるPb同位体比の測定を行ったところ,図2に示すようにごんどうサイトの黒鉱/黄鉱間にはPb同位体比の差異は認められなかった.

ところで,1500万年前の海底熱水鉱床が陸上に上がったとされる東北地方の黒鉱鉱床では黒鉱/黄鉱の間にPb同位体比の差異があることが以前より報告されている (Fehn et al., 1983).この論文で研究対象地域となっていた小坂鉱山の黒鉱/黄鉱のPb同位体比測定をLA法を行い再検討したところ,報告値と同じように明瞭な差異が確認された.

Fehn et al. (1983)は,熱水循環経路が鉱床下位の火山性砕屑物層とさらに下位の堆積岩層の間で変化することで黒鉱/黄鉱のPb同位体比の差異が生じるとするモデルを提唱した.ごんどうサイトでは堆積物層はほとんど確認できず,鉱石のPb同位体比も火山岩のPb同位体比に非常に近く,堆積物からの寄与がほとんど見られない.そのため,Fehn et al. (1983)のモデルで鉱床の下位に堆積物層がない場合がごんどうサイトに該当すると考えれば,上記のモデルでもごんどうサイトの黒鉱/黄鉱の均質なPb同位体比の説明が可能である.またごんどうサイトの海底下で黒鉱/黄鉱が厚みを持って確認されたことから,鉱体より下位に位置する堆積物層 (火山岩よりPb濃度が高い)は,黒鉱/黄鉱の生成にとって必要条件ではないことも明らかになった.

この論文で使われている画像

参考文献

Asakawa E, Murakami F, Tsukahara H, Mizohata S, Tara K (2015) Vertical Cable Seismic surveys for SMS exploration in Izena Cauldron, Okinawa-Trough. OCEANS 2015 - Genova, Genoa, 1–5. doi:10.1109/OCEANS-Genova.2015.7271479

Andrieu AS, Honnorez JJ, Lancelot J (1998) Lead isotope compositions of the TAG mineralization, Mid-Atlantic Ridge, 26° 08′ N. In: Herzig PM, Humphris SE, Miller DJ, Zierenberg RA (eds) Proceedings of the Ocean Drilling Program, Scientific Results. 101–109. doi:10.2973/odp.proc.sr.158.215.1998

Bentahila Y, Ben Othman D, Luck JM (2008) Strontium, lead and zinc isotopes in marine cores as tracers of sedimentary provenance: A case study around Taiwan orogen. Chem. Geol. 248:62–82. doi:10.1016/j.chemgeo.2007.10.024

Bjerkgård T, Cousens BL, Franklin JM (2000) The Middle Valley sulfide deposits, Northern Juan de Fuca Ridge: Radiogenic isotope systematics. Econ. Geol. 95:1473–1488. doi:10.2113/gsecongeo.95.7.1473

Blounot CW, Dickson FW (1969) The solubility of anhydrite (CaSO4) in NaCl-H2O from 100 to 450°C and 1 to 1000 bars. Geochim. Cosmochim. Acta. 33:227–245. doi:10.1016/0016-7037(69)90140-9

Corliss JB, Dymond J, Gordon LI, Edmond JM, Von RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, Van Andel TH, Goi LI (1979) Submarine Thermal Spring on the glapagos rift. Science 203:1073–1083. doi:10.1126/science.203.4385.1073

Dupré B, Blanc G, Boulègue J, Allègre CJ (1988) Metal remobilization at a spreading centre studied using lead isotopes. Nature 336:403–405. doi:10.1038/332141a0

Eldridge CS, Paul B. Barton Jr., Ohmoto H (1983) Mineral Textures and Their Bearing on Formation of the Kuroko Orebodies. In: Ohmoto H, Skinner BJ (eds) The Kuroko and Related Volcanogenic Massive Sulfide Deposits: Econ. Geol. Mon. 5:241–281. doi:10.5382/Mono.05.15

Fehn U, Doe BR, Delevaux MH (1983) The distribution of lead isotopes and the origin of kuroko ore deposits in the Hokuroku district, Japan. In: Ohmoto H, Skinner BJ (eds) The kuroko and related volcanogenic massive sulfide deposits: Econ. Geol. Mon. 5:488–506. doi:10.5382/Mono.05.28

Fouquet Y, Marcoux E (1995) Lead isotope systematics in Pacific hydrothermal sulfide deposits. J. Geophys Res. 100:6025–6040. doi:10.1029/94JB02646

Gena K, Chiba H, Kase K, Nakashima K, Ishiyama D (2013) The Tiger sulfide chimney, Yonaguni Knoll IV hydrothermal field, southern Okinawa Trough, Japan: the first reported occurrence of Pt–Cu–Fe-bearing bismuthinite and Sn-bearing chalcopyrite in an active seafloor hydrothermal system. Resource Geol. 63:360–370. doi:10.1111/rge.12015

Glasby GP, Iizasa K, Hannington M, Kubota H, Notsu K (2008) Mineralogy and composition of Kuroko deposits from northeastern Honshu and their possible modern analogues from the Izu-Ogasawara (Bonin) Arc south of Japan: Implications for mode of formation. Ore Geol. Rev. 34:547–560. doi:10.1016/j.oregeorev.2008.09.005

Halbach P, Hansmann W, Koppel V, Pracejus B (1997) Whole-rock and sulfide lead- isotope data from the hydrothermal JADE field in the Okinawa back-arc trough. Miner. Depos. 32:70–78. doi:10.1007/s001260050073

Halbach P, Nakamura K, Wahsner M, Lange J, Sakai H, Kaselitz L, Hansen RD, Yamano M, Post J, Prause B, Seifert R, Michaelis W, Teichmann F, Kinoshita M, Marten A, Ishibashi J, Czerwinski S, Blum N (1989) Probable modern analogue of Kuroko- type massive sulphide deposits in the Okinawa Trough back-arc basin. Nature 338:496–499. doi:10.1038/338496a0

Hannington MD, de Ronde CD, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. Econ. Geol. 100th Anniv:111–141. doi:10.5382/AV100.06

Harigane Y, Ishizuka O, Shimoda G, Sato T (2014) The preliminary results of new submarine caldera on the west of Kume-jima island, Central Ryukyu Arc, Japan. AGU Fall Meeting 2014, Abstract, T53A-4659.

Harigane Y, Ishizuka O, Shimoda G, Sato T (2015) Petrological characteristics of volcanic rocks in submarine volcanoes, west offshore of Kume-jima island. Volcanological Society of Japan 2015, Abstract, B3-14. doi:10.18940/vsj.2015.0_90

Hashiguchi H (1983) Penecontemporaneous Deformation of Kuroko Ore at the Kosaka Mine, Akita, Japan. In: Ohmoto H, Skinner BJ (eds) The Kuroko and Related Volcanogenic Massive Sulfide Deposits. Econ. Geol. Mon. 5:167–183. doi:10.5382/Mono.05.10

Hattori K, Muehlenbachs K (1980) Marine hydrothermal alteration at a Kuroko ore deposit, Kosaka, Japan. Contrib. Mineral. Petrol. 74:285–292. doi:10.1007/BF00371698

Humphris SE, Herzig PM, Miller DJ, Alt JC, Becker K, Brown D, Burgmann G, Chiba H, Fouquet Y, Gemmell JB, Guerin G, Hannington MD, Holm NG, Honnorez JJ, Iturrino GJ, Knott R, Ludwig R, Nakamura K, Petersen S, Reysenbach AL, Rona PA, Smith S, Sturz AA, Tivey MK, Zhao X (1995) The internal structure of an active sea-floor massive sulphide deposit. Nature: 377:713–716. doi:10.5670/oceanog.2007.80

Ishibashi J.-i, Noguchi T, Toki T, Miyabe S, Yamagami S, Onishi Y, Ymanaka T, Yokoyama Y, Omori E, Takahashi Y, Hatada K, Nakaguchi Y, Yoshizaki M, Konno U, Shibuya T, Takai K, Inagaki F, Kawagucci S (2014) Diversity of fluid geochemistry affected by processes during fluid upwelling in active hydrothermal fields in the Izena Hole, the middle Okinawa Trough back-arc basin. Geochem. J. 48: 357–369. doi:10.2343/geochemj.2.0311

Ishibashi J, Ikegami F, Tsuji T, Urabe T (2015a) Hydrothermal Activity in the Okinawa Trough Back-Arc Basin: Geological Background and Hydrothermal Mineralization. In: Ishibashi J, Okino K, Sunamura M (eds) Subseafoor Biosphere Linked to Hydrothermal Systems. pp 337–359. doi:10.1007/978-4-431-54865-2_27

Ishibashi J, Miyoshi Y, Tanaka K, Omori E, Takahashi Y, Furuzawa Y, Yamanaka T, Kawagucci S, Miyazaki J, Konno U, Watanabe S, Yanagawa K, Yoshizumi R, Urabe T (2015b) Pore fluid chemistry beneath active hydrothermal fields in the Mid- Okinawa Trough: results of shallow drillings by BMS during TAIGA11 cruise. In: Ishibashi J, Okino K, Sunamura M (eds) Subseafloor Biosphere Linked to Hydrothermal Systems. pp 535–560. doi:10.1007/978-4-431-54865-2_42

Ishibashi J, Totsuka S, Tsutsumi A, Tsukamoto N, Kira Y, Shimada K, Yamasaki T, Ikehara K, Nagase T, Takaya Y, Ikehata K, Goto T, Gouzu C, Shinjo R, Machiyama H, Iijima K, Yamamoto H, Kumagai H (2019) Mineralogical and geochemical study of sediment cores collected from the Gondou hydrothermal field in the Okinawa Trough. JpGU 2019, Abstract, SCG56-P13.

Ishikawa N, Haruhisa M, Shiokawa S (2016) Discovery of several new seafloor hydrothermal deposits by the regional survey, such as Gondou Site, in central part of the Okinawa Trough, Japan. Goldschmidt Conference 2016, Abstract, 1277.

Ishizuka H, Kawanobe Y, Sakai H (1990) Petrology and geochemistry of volcanic rocks dredged from the Okinawa Trough, an active back-ark basin. Geochem. J. 24:75–92. doi:10.2343/geochemj.24.75

Japan Agency for Marine-Eearth Science and Technology (JAMSTEC) (2016) Chikyu Okinawa Drilling Expedition : "Hydrothermal Sediments in Okinawa Trough (HOT III)" (Expedition Report). JAMSTEC Press Release. http://www.jamstec.go.jp/j/about/press_release/20161219/. Accessed 1 March 2019. (in Japanese)

Japan Coast Guard (JCG) (2014) Discovery the largest chimney group in Japan off Kume-jima. http://www.godac.jamstec.go. jp/catalog/data/doc_catalog/media/CK16-01-908_all.pdf. Accessed 4 February 2020. (in Japanese)

Japan Oil, Gas and Metals National Corporation (JOGMEC) (2015) Confirmation of the existence of a promising submarine hydrothermal deposit off Kume-jima, Okinawa Prefecture. http://www.jogmec.go.jp/news/release/content/300203628.pdf.

Accessed 4 February 2020. (in Japanese)

Japan Oil, Gas and Metals National Corporation (JOGMEC) (2016) Confirmation of the existence of two new submarine hydrothermal deposits in the Okinawa Trough. http://www.jogmec.go.jp/news/release/content/300304517.pdf. Accessed 4 February 2020. (in Japanese)

Kasaya T, Machiyama H, Kitada K, Nakamura K (2015) Trial exploration for hydrothermal activity using acoustic measurements at the North Iheya Knoll. Geochem. J. 49:597–602. doi:10.2343/geochemj.2.0389

Kawabe S, Masubuchi K (1975) The stock-work siliceous ore deposits at the Kosaka mine, Akita Prefecture. Mining Geol. 25:275-283. doi:10.11456/shigenchishitsu1951.25.275 (in Japanese and English abstract)

Kawagucci S, Chiba H, Ishibashi JI, Yamanaka T, Toki T, Muramatsu Y, Ueno Y, Makabe A, Inoue K, Yoshida N, Nakagawa S, Nunoura T, Takai K, Takahata N, Sano Y, Narita T, Teranishi G, Obata H, Gamo T (2011) Hydrothermal fluid geochemistry at the Iheya North field in the mid-Okinawa trough: Implication for origin of methane in subseafloor fluid circulation systems. Geochem. J. 45:109–124. doi:10.2343/geochemj.1.0105

Kawagucci S (2015) Fluid Geochemistry of High-Temperature Hydrothermal Fields in the Okinawa Trough. In: Ishibashi J, Okino K, Sunamura M (eds) Subseafoor Biosphere Linked to Hydrothermal Systems. pp 387–404. doi:10.1007/978-4-431- 54865-2_30

Kawasumi S, Chiba H (2017) Redox state of seafloor hydrothermal fluids and its effect on sulfide mineralization. Chem. Geol. 451:25–37. doi:10.1016/j.chemgeo.2017.01.001

Kimura JI, Kawabata H, Chang Q, Miyazaki T, Hanyu T (2013) Pb isotope analyses of silicate rocks and minerals with Faraday detectors using enhanced-sensitivity laser ablation-multiple collector-inductively coupled plasma mass spectrometry. Geochem. J. 47:369–384. doi:10.2343/geochemj.2.0252

Kitazono S, Ueno H (2003) Mineralogical and Genetical Aspects of the Doyashiki Kuroko Deposits, Hokuroku Basin, Japan. Resource Geol. 53:143–153. doi:10.1111/j.1751-3928.2003.tb00165.x

Kumagai H, Nozaki T, Ishibashi JI, Maeda, L, CK16-01 on-board member (2017a) Cruise Report SIP-HOT II "Explorer" (SIP-Hydrothermal deposit in Okinawa Trough) CK16-01 (Exp. 908), JAMSTEC, pp. 443, Yokosuka, Japan, http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/CK16-01- 908_all.pdf. Accessed 10 July 2018.

Kumagai H, Ishibashi JI, Nozaki T, Maeda L, Yamada Y, Saruhashi T, Kyo M, CK16-05 On-board Member (2017b) Preliminary results of the CK16-05 Cruise: Scientific drilling in Okinawa Trough of coring, logging using geothermal tool and refit of Long-term monitoring apparatus. JpGU-AGU Joint Meeting 2017, Abstract, SCG71-13.

Kumagai H, Nozaki T, Ishibashi J, Saito S, Komori S, Hamada Y, Sanada Y, Saruhashi T, Maeda L, Kubo Y, Takai K (2018) A Series of Scientific Drilling at the Areas of Submarine Hydrothermal Deposits with Core-log Integration for Deciphering Mineralization Processes. In The proceedings of the 28th (2018) International Ocean and Polar Engineering Conference, Vol.1, 63-68.

Lackschewitz KS, Devey CW, Stoffers P, Botz R, Eisenhauer A, Kummetz M, Schmidt M, Singer A (2004) Mineralogical, geochemical and isotopic characteristics of hydrothermal alteration processes in the active, submarine, felsic-hosted PACMANUS field, Manus Basin, Papua New Guinea. Geochim. Cosmochim. Acta. 68: 4405–4427. doi:10.1016/j.gca.2004.04.016

LeHuray AP, Church SE, Koski RA, Bouse RM (1988) Pb isotopes in sulfides from mid- ocean ridge hydrothermal sites. Geology 16:362–365. doi:10.1130/0091- 7613(1988)016<0362:PIISFM>2.3.CO;2

Lüders V, Pracejus B, Halbach P (2001) Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan). Chem. Geol. 173:45–58. doi:10.1016/S0009- 2541(00)00267-9

Masaki Y, Kinoshita M, Yamamoto H, Nakajima R, Kumagai H, Takai K (2014) The scale of hydrothermal circulation of the Iheya-North field inferred from intensive heat flow measurements and ocean drilling. AGU Fall Meeting 2014, Abstract, V21A- 4733.

Minami H, Ohara Y (2017) The Gondou hydrothermal field in the Ryukyu Arc: A huge hydrothermal system on the flank of a caldera volcano. Geochem. Geophys. Geosyst. 18:3489–3516. doi:10.1002/2017GC006868

Miyazaki J, Makabe A, Matsui Y, Ebina N, Tsutsumi S, Ishibashi J, Chen C, Kaneko S, Takai K, Kawagucci S (2017) WHATS-3: An Improved Flow-Through Multi-bottle Fluid Sampler for Deep-Sea Geofluid Research. Front. Earth Sci. 5:45. doi:10.3389/feart.2017.00045

Momma H, Iwase R, Mitsuzawa K, Kaiho Y, Fujiwara Y, Amitani Y, Aoki M (1996) Deep tow survey in Nanseisyoto Region (K95-07-NSS). JAMSTEC J. Deep Sea Res. 12:195–210. (in Japanese with English abstract)

Nakai S, Takamasa A, Fujiwara T, Toyoda S, Ishibashi J, Yoshizumi R, Urabe T (2018) Influence of Th-rich mineral phases on U–Th radioactive disequilibrium ages of sulfide deposits from the Okinawa Trough. Chem. Geol. 486:61–72. doi:10.1016/j.chemgeo.2018.04.004

Nakamura K, Kawagucci S, Kitada K, Kumagai H, Takai K, Okino K (2015) Water column imaging with multibeam echo-sounding in the mid-Okinawa Trough: Implications for distribution of deep-sea hydrothermal vent sites and the cause of acoustic water column anomaly. Geochem. J. 49:579–596. doi:10.2343/geochemj.2.0387

Ohmoto H (1996) Formation of volcanogenic massive sulfide deposits: The Kuroko perspective. Ore Geol. Rev. 10:135–177. doi:10.1016/0169-1368(95)00021-6

Petersen S, Hannington MD, Hölz S, Krätschell A, Klischies M, Graber S, Anderson MO (2019) Same , same , but different : recent advances in our understanding of modern seafloor hydrothermal systems. 15th SGA Bienn. Meet. 2019.

Riedo A, Meyer S, Heredia B, Neuland MB, Bieler A, Tulej M, Leya I, Iakovleva M, Mezger K, Wurz P (2013) Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces. Planet Space Sci. 87:1–13. doi:10.1016/j.pss.2013.09.007

de Ronde CEJ, Humphris SE, Höfig TW, Reyes AG, IODP Expedition 376 Scientists (2019) Critical role of caldera collapse in the formation of seafloor mineralization : The case of Brothers volcano. Geology 47:1–5. doi:10.1130/G46047.1/4719531/g46047.pdf

Scott SD, Barnes HL (1971) Sphalerite geothermometry and geobarometry. Econ. Geol. 66:653–669. doi:10.2113/gsecongeo.66.4.653

Shikazono N, Kouda R (1979) Chemical composition of tetrahedrite-tennantite minerals and the chemical environments of some Japanese ore deposits. Mining Geol. 29:33–41. doi:10.11456/shigenchishitsu1951.29.33 (in Japanese with English abstract)

Shinjo R, Chung S, Kato Y, Kimura M (1999) Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin. J. Geophys Res. 104:10591-10608. doi:10.1029/1999JB900040

Shimazaki H, Horikoshi E (1990) Black ore chimney from the Hanaoka deposits, Japan. Mining Geol. 40:313–321. doi:10.11456/shigenchishitsu1951.40.313

Shu Y, Nielsen SG, Zeng Z, Shinjo R, Blusztajn J, Wang X, Chen S (2017) Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: Evidence from thallium isotopes. Geochim. Cosmochim. Acta. 217: 462-491. doi:10.1016/j.gca.2017.08.035

Suzuki R, Ishibashi J, Nakaseama M, Konno U, Tsunogai U, Gena K, Chiba H (2008) Diverse range of mineralization induced by phase separation of hydrothermal fluid: a case study of the Yonaguni IV hydrothermal field in the Okinawa Trough Backarc Basin. Resource Geol. 58:267–288. doi:10.1111/j.1751- 3928.2008.00061.x.

Takai K, Kumagai H, Kubo Y, CK14-04 on-board member (2015) Cruise Report SIP- HOT I "Pathfinder" (SIP-Hydrothermal deposit in Okinawa Trough) CK14-04 (Exp. 907), JAMSTEC, pp. 116, Yokosuka, Japan, http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/CK14-04- 907_all.pdf. Accessed 2 August 2018.

Takai K, Mottl MJ, Nielsen SHH, the Expedition 331 Scientists (2011) Proceedings of the IODP, 331. Integrated Ocean Drilling ProgramManagement International, Inc., Tokyo. doi:10.2204/iodp.proc.331.101.2011

Takai K, Mottl MJ, Nielsen SHH, the IODP Expedition 331 Scientists (2012) IODP expedition 331: Strong and expansive subseafloor hydrothermal activities in the Okinawa Trough. Sci. Drill. 13:19–27. doi:10.2204/iodp.sd.13.03.2011

Tanimizu M, Ishikawa T (2006) Development of rapid and precise Pb isotope analytical techniques using MC-ICP-MS and new results for GSJ rock reference samples. Geochem. J. 40, 121-133. doi:10.2343/geochemj.40.121

Totsuka S, Ishibashi J, Nozaki T, Shimada K, Kimura J.I. (2017) Estimation of subseafloor environment at active hydrothermal fields in Okinawa Trough based on mineralogical and geochemical analysis. JpGU-AGU Joint Meeting 2017, Abstract, SCG71-14.

Totsuka S, Ishibashi J, Shimada K, Ikehata K, Machiyama H, Iijima K, Yamamoto H, Kumagai H, Ikehara K, Yamasaki T, Nagase T, Tindell T, Yonezu K, Tada Y (2019) Mineralogical and geochemical study of hydrothermal deposits beneath the seafloor at the Gondou field in the Okinawa Trough. JpGU 2019, Abstract, SCG56-02. (in Japanese)

Tsuji T, Takai K, Oiwane H, Nakamura Y, Masaki Y, Kumagai H, Kinoshita M, Yamamoto F, Okano T, Kuramoto S (2012) Hydrothermal fluid flow system around the Iheya North Knoll in the mid-Okinawa trough based on seismic reflection data. J Volcanol Geotherm. Res. 213–214:41–50. doi:10.1016/j.jvolgeores.2011.11.007

Ueno H, Hamasaki H, Murakawa Y, Kitazono S, Takeda T (2003) Ore and gangue minerals of sulfide chimneys from the North Knoll. JAMSTEC J. Deep Sea Res. 22:19–62.

Urabe T (1974) Iron content of sphalerite coexisting with pyrite from some Kuroko deposits In Geology of Kuroko deposits. In: Ishihara S, Kanehiro K, Sasaki A, Sato T, Shimazaki Y (eds) Geology of Kuroko Deposits, Mining Geol. Spec. 6:377–384. doi:10.1007/BF00206634

Verati C, Lancelot J, Hékinian R (1999) Pb isotope study of black-smokers and basalts from Pito Seamount site (Easter microplate). Chem. Geol. 155:45–63. doi:10.1016/S0009-2541(98)00140-5

Vidal P, Clauer N (1981) Pb and Sr isotopic systematics of some basalts and sulfides from the East Pacific Rise at 21°N (project RITA). Earth Planet Sci. Lett. 55:237–246. doi:10.1016/0012-821X(81)90103-5

Watanabe K (2001) Mapping the hydrothermal activity area on the Hatoma Knoll in the southern Okinawa Trough. JAMSTEC J. Deep Sea Res. 19:87–94. (in Japanese with English abstract)

Watanabe M (1974) On the textures of ores from the Daikoku ore deposit, Ainai mine, Akita Prefecture, Northeast Japan, and their implications in the ore genesis. In: Ishihara S, Kanehiro K, Sasaki A, Sato T, Shimazaki Y (eds) Geology of Kuroko Deposits, Mining Geol. Spec. 6:337–348.

Watanabe M, Hoshino K, Shiokawa R, Takaoka Y (2006) Metallic mineralization associated with pillow basalts in the Yaeyama Central Graben, Southern Okinawa Trough, Japan. JAMSTEC Rep. Res. Dev. 3:1–8.

Yakushi D, Enjoji M (2004) Chemical composition of ores from the Takara volcanogenic massive sulfide deposit, central Japan. Resource Geol. 54:437–446. doi:10.1111/j.1751-3928.2004.tb00219.x

Yamada R (2018) Review of the Kuroko deposits. Resource Geol. 68:79–102 (in Japanese with English abstract)

Yamaoka K, Nedachi M (1980) Minerals of the tetrahedrite tennantite series from the kuroko deposits and their zonal structure. Jour. Japan. Assoc. Mineral. Petrol. Econ. Geol. Special issue 2:97–104. (in Japanese with English abstract)

Yamasaki T (2017) Petrography and whole-rock major and trace element analyses of igneous rocks from Iheya North Knoll, middle Okinawa Trough, SIP Expedition CK14-04 (Exp. 907). J. Geol. Soc. Japan 123:23–29. doi:10.5575/geosoc.2016.0049

Yeats CJ, Hollis SP, Halfpenny A, Corona J-C, LaFlamme C, Southam G, Fiorentini M, Herrington RJ, Spratt J (2017) Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at Iheya North, Okinawa Trough, Japan. Ore Geol. Rev. 84:20–41. doi:10.1016/j.oregeorev.2016.12.014

Yuan H, Liu X, Chen L, Bao Z, Chen K, Zong C, Li XC, Qiu JW (2018) Simultaneous measurement of sulfur and lead isotopes in sulfides using nanosecond laser ablation coupled with two multi-collector inductively coupled plasma mass spectrometers. J. Asian Earth Sci. 154:386–396. doi:10.1016/j.jseaes.2017.12.040

Yuningsih ET (2016) Ore minerals from Kuroko type deposit of Toya–Takarada Mine, Hokkaido, Japan. Bul Sumber Daya Geol. 11:103–115.

Zeng Z, Ma Y, Chen S, David S, Xiaoyuan W, Xuebo Y (2017) Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: Implications for ore genesis and fluid circulation. Ore Geol. Rev. 87:155–171. doi:10.1016/j.oregeorev.2016.10.014

Zhang X, Zhai S, Yu Z, Yang Z, Xu J (2019) Zinc and lead isotope variation in hydrothermal deposits from the Okinawa Trough. Ore Geol. Rev. 111:1-10. doi:10.1016/j.oregeorev.2019.102944

Zierenberg RA, Fouquet Y, Miller DJ, Bahr JM, Baker, PA, Bjerkgård T, Brunner CA, Duckworth RC, Gable R, Gieskes J, Goodfellow WD, Gröschel-Becker HM, Guèrin G, Ishibashi J, Iturrino G, James RH, Lackschewitz KS, Marquez LL, Nehlig P, Peter JM, Rigsby CA, Schultheiss P, Shanks WC III, Simoneit BRT, Summit M, Teagle DAH, Urbat M, Zuffa GG (1998) The deep structure of a sea- floor hydrothermal deposit. Nature 392: 485–488. doi:10.1038/33126

Zierenberg RA, Koski RA, Morton JL, Bouse RM, Shanks WC III (1993) Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba Trough, southern Gorda Ridge. Econ. Geol. 88:2069–2098. doi:10.2113/gsecongeo.88.8.2069

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る