リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「非線形光学顕微鏡を用いた形質膜および低分子化合物の高感度イメージング (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

非線形光学顕微鏡を用いた形質膜および低分子化合物の高感度イメージング (本文)

水口, 高翔 慶應義塾大学

2021.03.23

概要

本章では非線形光学技術を用いた生物学研究応用の背景と本研究の位置付けについて述べる.非線形光学自体は特にレーザ工学においてよく研究されている物理現象であり,生物学応用においては非線形光学現象を活用した広範な応用研究が存在する.本論文では,その全てを取り扱うことはできないが,本研究で特に関連する形質膜と低分子化合物に着目をして,非線形光学現象を用いた生物学応用研究のこれまでの動向について述べる.ただし,ここでは大まかな研究の事例を概観するに留め,詳細な原理と計測手法については第2章および第3章で述べる.

この論文で使われている画像

参考文献

1. Maier, O., Oberle, V. & Hoekstra, D. Fluorescent lipid probes: some properties and applications (a review). Chem. Phys. Lipids 116, 3–18 (2002).

2. Cairo, C. W., Key, J. A. & Sadek, C. M. Fluorescent small-molecule probes of biochemistry at the plasma membrane. Curr. Opin. Chem. Biol. 14, 57–63 (2010).

3. Kwiatek, J. M. et al. Characterization of a New Series of Fluorescent Probes for Imaging Membrane Order. PLoS One 8, e52960 (2013).

4. Shim, S.-H. et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl. Acad. Sci. 109, 13978–13983 (2012).

5. Mattheyses, A. L., Simon, S. M. & Rappoport, J. Z. Imaging with total internal reflection fluorescence microscopy for the cell biologist. J. Cell Sci. 123, 3621–3628 (2010).

6. Cox, G. Biological applications of second harmonic imaging. Biophys. Rev. 3, 131–141 (2011).

7. Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of Optical Harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

8. Fine, S. & Hansen, W. P. Optical Second Harmonic Generation in Biological Systems. Appl. Opt. 10, 2350 (1971).

9. Freund, I. & Deutsch, M. Second-harmonic microscopy of biological tissue. Opt. Lett. 11, 94 (1986).

10. Oheim, M., Michael, D. J., Geisbauer, M., Madsen, D. & Chow, R. H. Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches. Advanced Drug Delivery Reviews 58, 788–808 (2006).

11. Denk, W., Strickler, J. & Webb, W. Two-photon laser scanning fluorescence microscopy. Science (80-. ). 248, 73–76 (1990).

12. Williams, R. M., Zipfel, W. R. & Webb, W. W. Multiphoton microscopy in biological research. Curr. Opin. Chem. Biol. 5, 603–608 (2001).

13. Yuste, R. Fluorescence microscopy today. Nat. Methods 2, 902–904 (2005).

14. Carriles, R. et al. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev. Sci. Instrum. 80, 081101 (2009).

15. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nature Methods 2, 932–940 (2005).

16. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nature Biotechnology 21, 1369–1377 (2003).

17. Pavone, F. S. & Campagnola, P. J. Second Harmonic Generation Imaging. (CRC Press, 2013).

18. Mertz, J. & Moreaux, L. Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers. Opt. Commun. 196, 325–330 (2001).

19. Plotnikov, S. V., Millard, A. C., Campagnola, P. J. & Mohler, W. A. Characterization of the Myosin-Based Source for Second-Harmonic Generation from Muscle Sarcomeres. Biophys. J. 90, 693–703 (2006).

20. Yokota, H., Kaneshiro, J. & Uesu, Y. Optical Second Harmonic Generation Microscopy as a Tool of Material Diagnosis. Phys. Res. Int. 2012, 1–12 (2012).

21. Campagnola, P. Second Harmonic Generation Imaging Microscopy: Applications to Diseases Diagnostics. Anal. Chem. 83, 3224–3231 (2011).

22. Campagnola, P. J. & Loew, L. M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nature

Biotechnology 21, 1356–1360 (2003).

23. Mohler, W., Millard, A. C. & Campagnola, P. J. Second harmonic generation imaging of endogenous structural proteins. Methods 29, 97–109 (2003).

24. Chen, X., Nadiarynkh, O., Plotnikov, S. & Campagnola, P. J. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7, 654–669 (2012).

25. Campagnola, P. J. et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 82, 493–508 (2002).

26. Cox, G. et al. 3-Dimensional imaging of collagen using second harmonic generation. J. Struct. Biol. 141, 53–62 (2003).

27. Zipfel, W. R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl. Acad.

Sci. 100, 7075–7080 (2003).

28. Fu, Y., Wang, H., Shi, R. & Cheng, J.-X. Second Harmonic and Sum Frequency Generation Imaging of Fibrous Astroglial Filaments in Ex Vivo Spinal Tissues. Biophys.

J. 92, 3251–3259 (2007).

29. Chen, Y. R. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337, 519 (1989).

30. Reeve, J. E. et al. Amphiphilic Porphyrins for Second Harmonic Generation Imaging. J. Am. Chem. Soc. 131, 2758–2759 (2009).

31. Reeve, J. E., Anderson, H. L. & Clays, K. Dyes for biological second harmonic generation imaging. Phys. Chem. Chem. Phys. 12, 13484 (2010).

32. Pons, T., Moreaux, L., Mongin, O., Blanchard-Desce, M. & Mertz, J. Mechanisms of membrane potential sensing with second-harmonic generation microscopy. J. Biomed. Opt. 8, 428 (2003).

33. Moreaux, L., Sandre, O., Blanchard-Desce, M. & Mertz, J. Membrane imaging by

simultaneous second-harmonic generation and two-photon microscopy. Opt. Lett. 25, 320 (2000).

34. Moreaux, L., Sandre, O. & Mertz, J. Membrane imaging by second-harmonic generation microscopy. J. Opt. Soc. Am. B 17, 1685 (2000).

35. Moreaux, L., Sandre, O., Charpak, S., Blanchard-Desce, M. & Mertz, J. Coherent Scattering in Multi-Harmonic Light Microscopy. Biophys. J. 80, 1568–1574 (2001).

36. Campagnola, P. J., Clark, H. A., Mohler, W. A., Lewis, A. & Loew, L. M.

Second-harmonic imaging microscopy of living cells. J. Biomed. Opt. 6, 277 (2001).

37. Sacconi, L., Dombeck, D. A. & Webb, W. W. Overcoming photodamage in

second-harmonic generation microscopy: Real-time optical recording of neuronal action potentials. Proc. Natl. Acad. Sci. 103, 3124–3129 (2006).

38. Nuriya, M., Jiang, J., Nemet, B., Eisenthal, K. B. & Yuste, R. Imaging membrane potential in dendritic spines. Proc. Natl. Acad. Sci. 103, 786–790 (2006).

39. Pons, T. & Mertz, J. Membrane potential detection with second-harmonic generation and two-photon excited fluorescence: A theoretical comparison. Opt.

Commun. 258, 203–209 (2006).

40. Zochowski, M. et al. Imaging membrane potential with voltage-sensitive dyes. Biol. Bull. 198, 1–21 (2000).

41. Peterka, D. S., Takahashi, H. & Yuste, R. Imaging Voltage in Neurons. Neuron 69, 9–21 (2011).

42. Zochowski, M. et al. Concepts in Imaging and Microscopy Imaging Membrane Potential with Voltage-Sensitive Dyes. Biol. Bull. 198, 1 (2000).

43. Campagnola, P. J., Wei, M., Lewis, A. & Loew, L. M. High-Resolution Nonlinear Optical Imaging of Live Cells by Second Harmonic Generation. Biophys.

J. 77, 3341–3349 (1999).

44. Dombeck, D. A., Sacconi, L., Blanchard-Desce, M. & Webb, W. W. Optical Recording of Fast Neuronal Membrane Potential Transients in Acute Mammalian Brain Slices by Second-Harmonic Generation Microscopy. J. Neurophysiol. 94, 3628–3636 (2005).

45. Bouevitch, O., Lewis, A., Pinevsky, I., Wuskell, J. P. & Loew, L. M. Probing membrane potential with nonlinear optics. Biophys. J. 65, 672–679 (1993).

46. Peleg, G., Lewis, A., Linial, M. & Loew, L. M. Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites. Proc. Natl. Acad. Sci. 96, 6700–6704 (1999).

47. Nuriya, M. & Yasui, M. Membrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging. J. Biomed. Opt. 15, 020503 (2010).

48. Kato, N. Optical second harmonic generation microscopy: application to the sensitive detection of cell membrane damage. Biophys. Rev. 11, 399–408 (2019).

49. Moen, E. K., Ibey, B. L. & Beier, H. T. Detecting Subtle Plasma Membrane Perturbation in Living Cells Using Second Harmonic Generation Imaging. Biophys. J. 106, L37–L40 (2014).

50. Momotake, A. et al. Monitoring the morphological evolution of giant vesicles by azo dye-based sum-frequency generation (SFG) microscopy. Colloids Surfaces B Biointerfaces 186, 110716 (2020).

51. Nuriya, M. et al. Multimodal two-photon imaging using a second harmonic generation-specific dye. Nat. Commun. 7, 11557 (2016).

52. RAMAN, C. V. & KRISHNAN, K. S. A New Type of Secondary Radiation.

Nature 121, 501–502 (1928).

53. Woodbury, E. J. & Ng, W. K. Ruby laser operation in near IR. Proc. Inst. Radio Eng. 50, 2367 (1962).

54. Maker, P. D. & Terhune, R. W. Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength. Phys. Rev. 137, A801–A818 (1965).

55. Duncan, M. D., Reintjes, J. & Manuccia, T. J. Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7, 350 (1982).

56. Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering. Phys. Rev. Lett. 82, 4142–4145 (1999).

57. Ploetz, E., Laimgruber, S., Berner, S., Zinth, W. & Gilch, P. Femtosecond stimulated Raman microscopy. Appl. Phys. B 87, 389–393 (2007).

58. Freudiger, C. W. et al. Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science (80-. ). 322, 1857–1861 (2008).

59. Cheng, J.-X. & Xie, X. S. Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications. J. Phys. Chem. B 108, 827–840 (2004).

60. Evans, C. L. & Xie, X. S. Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine. Annu. Rev. Anal. Chem. 1, 883–909 (2008).

61. Cheng, J. X., Jia, Y. K., Zheng, G. & Xie, X. S. Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. Biophys. J. 83, 502–509 (2002).

62. Camp Jr, C. H. & Cicerone, M. T. Chemically sensitive bioimaging with coherent Raman scattering. Nat. Photonics 9, 295–305 (2015).

63. Wurpel, G. W. H., Schins, J. M. & Müller, M. Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy. Opt.

Lett. 27, 1093 (2002).

64. Nan, X., Potma, E. O. & Xie, X. S. Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy. Biophys.

J. 91, 728–735 (2006).

65. Wang, H.-W., Le, T. T. & Cheng, J.-X. Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope. Opt.

Commun. 281, 1813–1822 (2008).

66. Wang, H., Fu, Y., Zickmund, P., Shi, R. & Cheng, J.-X. Coherent Anti-Stokes Raman Scattering Imaging of Axonal Myelin in Live Spinal Tissues. Biophys. J. 89, 581–591 (2005).

67. Nuriya, M. et al. Characterization of Intra/Extracellular Water States Probed by Ultrabroadband Multiplex Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopic Imaging. J. Phys. Chem. A 123, 3928–3934 (2019).

68. Yamakoshi, H. et al. Imaging of EdU, an Alkyne-Tagged Cell Proliferation Probe, by Raman Microscopy. J. Am. Chem. Soc. 133, 6102–6105 (2011).

69. Yamakoshi, H. et al. Alkyne-Tag Raman Imaging for Visualization of Mobile Small Molecules in Live Cells. J. Am. Chem. Soc. 134, 20681–20689 (2012).

70. Jamieson, L. E. et al. Tracking intracellular uptake and localisation of alkyne tagged fatty acids using Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 197, 30–36 (2018).

71. Best, M. D. Click Chemistry and Bioorthogonal Reactions: Unprecedented Selectivity in the Labeling of Biological Molecules. Biochemistry 48, 6571–6584 (2009).

72. Hu, F. et al. Supermultiplexed optical imaging and barcoding with engineered polyynes.

Nat. Methods 15, 194–200 (2018).

73. Wei, L. et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods 11, 410–412 (2014).

74. Hong, S. et al. Live-Cell Stimulated Raman Scattering Imaging of Alkyne-Tagged Biomolecules. Angew. Chemie Int. Ed. 53, 5827–5831 (2014).

75. Hu, F., Lamprecht, M. R., Wei, L., Morrison, B. & Min, W. Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering. Sci. Rep. 6, 39660 (2016).

76. Tipping, W. J., Lee, M., Serrels, A., Brunton, V. G. & Hulme, A. N. Stimulated Raman scattering microscopy: an emerging tool for drug discovery. Chem. Soc.

Rev. 45, 2075–2089 (2016).

77. Tipping, W. J., Lee, M., Serrels, A., Brunton, V. G. & Hulme, A. N. Imaging drug uptake by bioorthogonal stimulated Raman scattering microscopy. Chem.

Sci. 8, 5606–5615 (2017).

78. Fu, D. Quantitative chemical imaging with stimulated Raman scattering microscopy.

Curr. Opin. Chem. Biol. 39, 24–31 (2017).

79. Fu, D. et al. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat.

Chem. 6, 614–622 (2014).

80. Kennedy, D. C., McKay, C. S., Tay, L. lin, Rouleau, Y. & Pezacki, J. P. Carbon-bonded silver nanoparticles: Alkyne-functionalized ligands for SERS imaging of mammalian cells. Chem. Commun. 47, 3156–3158 (2011).

81. Maity, P., Takano, S., Yamazoe, S., Wakabayashi, T. & Tsukuda, T. Binding Motif of Terminal Alkynes on Gold Clusters. J. Am. Chem. Soc. 135, 9450–9457 (2013).

82. Li, M. et al. Alkyne-and nitrile-anchored gold nanoparticles for multiplex SERS imaging of biomarkers in cancer cells and tissues. Nanotheranostics 3, 113–119 (2019).

83. Kong, K. V., Ho, C. J. H., Gong, T., Lau, W. K. O. & Olivo, M. Sensitive SERS glucose sensing in biological media using alkyne functionalized boronic acid on planar substrates. Biosens. Bioelectron. 56, 186–191 (2014).

84. Xiao, M. et al. SERS Imaging of Cell-Surface Biomolecules Metabolically Labeled with Bioorthogonal Raman Reporters. Chem. - An Asian J. 9, 2040–2044 (2014).

85. Ando, J. et al. Alkyne-Tag SERS Screening and Identification of

Small-Molecule-Binding Sites in Protein. J. Am. Chem. Soc. 138, 13901–13910 (2016).

86. Ardini, M. et al. Live Intracellular Biorthogonal Imaging by Surface Enhanced Raman Spectroscopy using Alkyne-Silver Nanoparticles Clusters. Sci. Rep. 8, 12652 (2018).

87. Tanuma, M. et al. Direct visualization of an antidepressant analog using surface-enhanced Raman scattering in the brain. JCI Insight 5, e133348 (2020).

88. Koike, K. et al. Quantitative Drug Dynamics Visualized by Alkyne-Tagged Plasmonic-Enhanced Raman Microscopy. ACS Nano 14, 15032–15041 (2020).

89. Zong, C. et al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nat. Commun. 10, 5318 (2019).

90. Oudar, J. L. & Chemla, D. S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 66, 2664–2668 (1977).

91. Kneipp, J., Kneipp, H. & Kneipp, K. SERS—a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37, 1052 (2008).

92. Czamara, K. et al. Raman spectroscopy of lipids: a review. J. Raman Spectrosc. 46, 4–20 (2015).

93. Mizuguchi, T. et al. Multimodal Multiphoton Imaging of the Lipid Bilayer by

Dye-Based Sum-Frequency Generation and Coherent Anti-Stokes Raman Scattering.

Anal. Chem. 92, 5656–5660 (2020).

94. Ozeki, Y. et al. Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses. Opt. Express 18, 13708 (2010).

95. Ozeki, Y., Asai, T., Shou, J. & Yoshimi, H. Multicolor Stimulated Raman Scattering Microscopy With Fast Wavelength-Tunable Yb Fiber Laser. IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

96. Grecco, H. E., Schmick, M. & Bastiaens, P. I. H. Signaling from the Living Plasma Membrane. Cell 144, 897–909 (2011).

97. Steyer, J. A. & Almers, W. A real-time view of life within 100 nm of the plasma membrane. Nat. Rev. Mol. Cell Biol. 2, 268–275 (2001).

98. Brown, E. et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med. 9, 796–800 (2003).

99. Ben-Oren, I., Peleg, G., Lewis, A., Minke, B. & Loew, L. Infrared nonlinear optical measurements of membrane potential in photoreceptor cells. Biophys. J. 71, 1616–1620 (1996).

100. Zacharias, D. A. Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells. Science (80-. ). 296, 913–916 (2002).

101. Celik, E. et al. Agonist leukadherin-1 increases CD11b/CD18-dependent adhesion via membrane tethers. Biophys. J. 105, 2517–2527 (2013).

102. Quader, S. et al. Selective intracellular delivery of proteasome inhibitors through pH-sensitive polymeric micelles directed to efficient antitumor therapy. J. Control. Release 188, 67–77 (2014).

103. Resh, M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta - Mol. Cell Res. 1451, 1–16 (1999).

104. D’Souza-Schorey, C. et al. ARF6 Targets Recycling Vesicles to the Plasma Membrane: Insights from an Ultrastructural Investigation. J. Cell Biol. 140, 603–616 (1998).

105. Moen, E. K., Ibey, B. L. & Beier, H. T. Detecting subtle plasma membrane perturbation in living cells using second harmonic generation imaging. Biophys. J. 106, (2014).

106. Rama, S., Vetrivel, L. & Semyanov, A. Second-harmonic generation voltage imaging at subcellular resolution in rat hippocampal slices. J. Biophotonics 3, 784–790 (2010).

107. Cheng, J. X. & Xie, X. S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science (80-. ). 350, (2015).

108. Le, T. T., Yue, S. & Cheng, J.-X. Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy. J. Lipid Res. 51, 3091–3102 (2010).

109. Paar, M. et al. Remodeling of Lipid Droplets during Lipolysis and Growth in Adipocytes.

J. Biol. Chem. 287, 11164–11173 (2012).

110. Day, J. P. R., Rago, G., Domke, K. F., Velikov, K. P. & Bonn, M. Label-Free Imaging of Lipophilic Bioactive Molecules during Lipid Digestion by Multiplex Coherent

Anti-Stokes Raman Scattering Microspectroscopy. J. Am. Chem. Soc. 132, 8433–8439 (2010).

111. Hellerer, T. et al. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. Proc. Natl. Acad.

Sci. 104, 14658–14663 (2007).

112. Lyn, R. K., Kennedy, D. C., Stolow, A., Ridsdale, A. & Pezacki, J. P. Dynamics of lipid droplets induced by the hepatitis C virus core protein. Biochem. Biophys. Res.

Commun. 399, 518–524 (2010).

113. Nan, X., Cheng, J.-X. & Xie, X. S. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J. Lipid Res. 44, 2202–2208 (2003).

114. Jüngst, C., Winterhalder, M. J. & Zumbusch, A. Fast and long term lipid droplet tracking with CARS microscopy. J. Biophotonics 4, 435–441 (2011).

115. Demchenko, A. P., Mély, Y., Duportail, G. & Klymchenko, A. S. Monitoring Biophysical Properties of Lipid Membranes by Environment-Sensitive Fluorescent Probes. Biophys. J. 96, 3461–3470 (2009).

116. Gaus, K. et al. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc. Natl. Acad. Sci. 100, 15554–15559 (2003).

117. Hishida, M., Seto, H., Yamada, N. L. & Yoshikawa, K. Hydration process of multi-stacked phospholipid bilayers to form giant vesicles. Chem. Phys. Lett. 455, 297–302 (2008).

118. Cahalan, M. D., Parker, I., Wei, S. H. & Miller, M. J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nat. Rev. Immunol. 2, 872–880 (2002).

119. Cheng, J.-X. & Xie, X. S. Coherent Raman scattering microscopy. (CRC press, 2012).

120. Walde, P., Cosentino, K., Engel, H. & Stano, P. Giant Vesicles: Preparations and Applications. ChemBioChem 11, 848–865 (2010).

121. Müller, M. & Schins, J. M. Imaging the Thermodynamic State of Lipid Membranes with Multiplex CARS Microscopy. J. Phys. Chem. B 106, 3715–3723 (2002).

122. Mizuguchi, T., Yasui, M. & Nuriya, M. High-Resolution Plasma Membrane-Selective Imaging by Second Harmonic Generation. iScience 9, 359–366 (2018).

123. Robenek, H. et al. Lipid Droplets Gain PAT Family Proteins by Interaction with Specialized Plasma Membrane Domains. J. Biol. Chem. 280, 26330–26338 (2005).

124. Rabey, J. M. et al. Rasagiline Mesylate, a New Mao-B Inhibitor for the Treatment of Parkinson’s Disease: A Double-Blind Study as Adjunctive Therapy to Levodopa. Clin. Neuropharmacol. 23, 324–330 (2000).

125. Zhang, H. et al. Pharmacokinetic Drug Interactions Involving 17α-Ethinylestradiol. Clin. Pharmacokinet. 46, 133–157 (2007).

126. Day, J. P. R. et al. Quantitative coherent anti-stokes raman scattering (CARS) microscopy. J. Phys. Chem. B 115, 7713–7725 (2011).

127. Cheemalapati, S. V. et al. Subcellular and in-vivo Nano-Endoscopy. Sci. Rep. 6, 34400 (2016).

128. Saar, B. G. et al. Video-Rate Molecular Imaging in Vivo with Stimulated Raman

Scattering. Science (80-. ). 330, 1368–1370 (2010).

129. Zhang, D., Slipchenko, M. N. & Cheng, J.-X. Highly Sensitive Vibrational Imaging by Femtosecond Pulse Stimulated Raman Loss. J. Phys. Chem. Lett. 2, 1248–1253 (2011).

130. Sau, T. K. & Murphy, C. J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 21, 2923–2929 (2005).

131. Stiles, P. L., Dieringer, J. A., Shah, N. C. & Van Duyne, R. P. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

132. Alkilany, A. M., Frey, R. L., Ferry, J. L. & Murphy, C. J. Gold Nanorods as Nanoadmicelles: 1-Naphthol Partitioning into a Nanorod-Bound Surfactant Bilayer. Langmuir 24, 10235–10239 (2008).

133. Silva, C. P., Otero, M. & Esteves, V. Processes for the elimination of estrogenic steroid hormones from water: A review. Environ. Pollut. 165, 38–58 (2012).

134. Burgos, A. E., Ribeiro-Santos, T. A. & Lago, R. M. Adsorption of the harmful hormone ethinyl estradiol inside hydrophobic cavities of CTA+ intercalated montmorillonite. Water Sci. Technol. 74, 663–671 (2016).

135. Zhang, D., Slipchenko, M. N., Leaird, D. E., Weiner, A. M. & Cheng, J.-X. Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper. Opt. Express 21, 13864 (2013).

136. Johnson, P. B. & Christy, R. W. Optical Constants of the Noble Metals. Phys. Rev. B 6, 4370–4379 (1972).

137. Hale, G. M. & Querry, M. R. Optical Constants of Water in the 200-nm to 200-μm Wavelength Region. Appl. Opt. 12, 555 (1973).

138. Lim, J. K., Joo, S. W. & Shin, K. S. Concentration dependent Raman study

of 1,4-diethynylbenzene on gold nanoparticle surfaces. Vib. Spectrosc. 43, 330–334 (2007).

139. Yoo, B. K. & Joo, S. W. In situ Raman monitoring triazole formation from

self-assembled monolayers of 1,4-diethynylbenzene on Ag and Au surfaces via ‘click’

cyclization. J. Colloid Interface Sci. 311, 491–496 (2007).

140. Jang, Y. H., Hwang, S., Oh, J. J. & Joo, S. W. Adsorption change of cyclohexyl acetylene on gold nanoparticle surfaces. Vib. Spectrosc. 51, 193–198 (2009).

141. Frontiera, R. R., Gruenke, N. L. & Van Duyne, R. P. Fano-Like Resonances Arising from Long-Lived Molecule-Plasmon Interactions in Colloidal Nanoantennas. Nano Lett. 12, 5989–5994 (2012).

142. Mi, X. et al. Multiple surface plasmon resonances enhanced nonlinear optical microscopy. Nanophotonics 8, 487–493 (2019).

143. Wang, Y. et al. Multi-plasmon resonances enhanced two-photon coherent anti-Stokes Raman scattering by nanorods. Spectrochim. Acta Part A Mol. Biomol.

Spectrosc. 231, 118117 (2020).

144. Aftafa, C. et al. Ionic liquid intercalated clay sorbents for micro solid phase extraction of steroid hormones from water samples with analysis by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1361, 43–52 (2014).

145. Ozeki, Y., Miyawaki, Y. & Taguchi, Y. Quantum-enhanced balanced detection for ultrasensitive transmission measurement. J. Opt. Soc. Am. B 37, 3288 (2020).

146. de Andrade, R. B. et al. Quantum-enhanced continuous-wave stimulated Raman scattering spectroscopy. Optica 7, 470 (2020).

147. Wang, L. et al. Surface chemistry of gold nanorods: Origin of cell membrane damage and cytotoxicity. Nanoscale 5, 8384–8391 (2013).

148. Stuart, D. A. et al. Glucose Sensing Using Near-Infrared Surface-Enhanced Raman Spectroscopy: Gold Surfaces, 10-Day Stability, and Improved Accuracy. Anal. Chem. 77, 4013–4019 (2005).

149. Bantz, K. C. & Haynes, C. L. Surface-enhanced Raman scattering detection and discrimination of polychlorinated biphenyls. Vib. Spectrosc. 50, 29–35 (2009).

150. Jones, C. L., Bantz, K. C. & Haynes, C. L. Partition layer-modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Anal. Bioanal. Chem. 394, 303–311 (2009).

151. Du, J. & Jing, C. Preparation of thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification. J. Phys. Chem. C 115, 17829–17835 (2011).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る