リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「炭酸アパタイト製骨補填材と自家骨との併用による骨形成への有用性について」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

炭酸アパタイト製骨補填材と自家骨との併用による骨形成への有用性について

溝上, 宗久 MIZOKAMI, Tokihisa ミゾカミ, トキヒサ 九州大学

2023.03.20

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Synergistic Effect of Carbonate Apatite and
Autogenous Bone on Osteogenesis
溝上, 宗久

https://hdl.handle.net/2324/6787526
出版情報:Kyushu University, 2022, 博士(歯学), 課程博士
バージョン:
権利関係:© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license.

(様式3)





:溝上

宗久

論 文 名 :Synergistic Effect of Carbonate Apatite and Autogenous Bone on Osteogenesis
( 炭酸アパタイト製骨補填材と自家骨との併用による骨形成への有用性について)





:甲















⻭科⽋損補綴治療において,⾃家⾻を⽤いた⾻造成は重要な選択肢の⼀つである.しかし,⽋損範囲
が⼤きい症例では⽣体への侵襲も考慮され,⼈⼯⾻の応⽤が必要となる.近年では⾻の無機成分であ
る炭酸アパタイト(CO3Ap)を⽤いた⾻補填剤が開発され,優れた⾻形性能が報告されているが,⾃
家⾻と⽐較して⾻誘導能が低く,⾻⽋損部の周囲既存⾻より離れた部位では⾻置換が遅れることも知
られている.本研究では CO3Ap と⾃家⾻(AB)を混和の⾻形性能に与える影響について検討を⾏っ
た.
培養実験では破⾻細胞様培養株(RAW-D)を AB,CO3Ap,または両⽅(Mix)が存在した環境下で
培養し,TRAP(酒⽯酸耐性酸性フォスファターゼ)染⾊することで破⾻細胞の数を評価した.また⾻
芽細胞様細胞(MC3T3-E1)を同様に培養し,その接着細胞数を評価した.動物実験では6週齢雄性
Wistar ラットの脛⾻に 1.5mm の⾻⽋損を作製し,AB,CO3Ap または Mix をドーム状に⼀定量添加
しメンブレンを設置した.⼀⽅の対照群ではメンブレンのみを設置した.0,14,21⽇後に脛⾻
を採取し,創部の組織形態を観察,さらに⽪質⾻の厚みを計測した.すべての統計処理は⼀元分散分
析(有意⽔準 p<0.05)を⽤いておこなった.
培養実験では,CO3Ap に⾃家⾻を混和した Mix 群において,⾻芽細胞の数は CO3Ap 群と⽐較して有
意差をもって増加し,破⾻細胞数は,CO3Ap 群が有意差をもって減少したところ,⾃家⾻群と有意差
がないところまで回復した.⼀⽅動物実験では,Mix 群では他の群と⽐較して有意に⽪質⾻の厚みが増
加したのに対して,AB または CO3Ap 群では経時的に厚みが減少した.
CO3Ap に⾼い⾻誘導能をもつ⾃家⾻を混和することで,吸収されることなく広範囲で⾻形成が起こる
ことが本研究の結果から⽰された.これにより⾃家⾻と併⽤することにより,⼤きな⾻⽋損に対して
も⾻補填材として CO3Ap が適応できる可能性が⽰唆された.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Pietrokovski, J.; Massler, M. Alveolar ridge resorption following tooth extraction. J. Prosthet Dent. 1967, 17, 21–27. [CrossRef]

Schropp, L.; Wenzel, A.; Kostopoulos, L.; Karring, T. Bone healing and soft tissue contour changes following single-tooth

extraction: A clinical and radiographic 12-month prospective study. Int. J. Periodontics Restor. Dent. 2003, 23, 313–323.

Kumar, P.; Vinitha, B.; Fathima, G. Bone grafts in dentistry. J. Pharm. Bioallied. Sci. 2013, 5, 125–127. [CrossRef]

Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Bone regeneration: Current concepts and future directions. BMC Med.

2011, 9, 66. [CrossRef]

Nkenke, E.; Neukam, F.W. Autogenous bone harvesting and grafting in advanced jaw resorption: Morbidity, resorption and

implant survival. Eur. J. Oral Implantol. 2014, 7, 203–217.

Misch, C.M. Comparison of intraoral donor sites for onlay grafting prior to implant placement. Int. J. Oral Maxillofac. Implants.

1997, 12, 767–776.

Polo-Corrales, L.; Latorre-Esteves, M.; Ramirez-Vick, J.E. Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 2014, 14,

15–56. [CrossRef]

Poh, P.S.P.; Valainis, D.; Bhattacharya, K.; van Griensven, M.; Dondl, P. Optimization of Bone Scaffold Porosity Distributions. Sci.

Rep. 2019, 9, 9170. [CrossRef]

Sheikh, Z.; Hamdan, N.; Ikeda, Y.; Grynpas, M.; Ganss, B.; Glogauer, M. Natural graft tissues and synthetic biomaterials for

periodontal and alveolar bone reconstructive applications: A review. Biomater. Res. 2017, 21, 9. [CrossRef] [PubMed]

Titsinides, S.; Agrogiannis, G.; Karatzas, T. Bone grafting materials in dentoalveolar reconstruction: A comprehensive review. Jpn.

Dent. Sci Rev. 2019, 55, 26–32. [CrossRef] [PubMed]

Miron, R.J.; Hedbom, E.; Saulacic, N.; Zhang, Y.; Sculean, A.; Bosshardt, D.D.; Buser, D. Osteogenic potential of autogenous bone

grafts harvested with four different surgical techniques. J. Dent. Res. 2011, 90, 1428–1433. [CrossRef] [PubMed]

Habibovic, P.; Sees, T.M.; van den Doel, M.A.; van Blitterswijk, C.A.; de Groot, K. Osteoinduction by biomaterials–physicochemical

and structural influences. J. Biomed. Mater. Res. A 2006, 77, 747–762. [CrossRef] [PubMed]

Albrektsson, T.; Johansson, C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 2001, 10 (Suppl. S2), S96–S101.

Ishikawa, K.; Hayashi, K. Carbonate apatite artificial bone. Sci. Technol. Adv. Mater. 2021, 22, 683–694. [CrossRef]

Habibovic, P.; Kruyt, M.C.; Juhl, M.V.; Clyens, S.; Martinetti, R.; Dolcini, L.; Theilgaard, N.; van Blitterswijk, C.A. Comparative

in vivo study of six hydroxyapatite-based bone graft substitutes. J. Orthop. Res. 2008, 26, 1363–1370. [CrossRef] [PubMed]

Velard, F.; Schlaubitz, S.; Fricain, J.C.; Guillaume, C.; Laurent-Maquin, D.; Moller-Siegert, J.; Vidal, L.; Jallot, E.; Sayen, S.;

Raissle, O.; et al. In vitro and in vivo evaluation of the inflammatory potential of various nanoporous hydroxyapatite biomaterials.

Nanomedicine 2015, 10, 785–802. [CrossRef]

Goto, T.; Kojima, T.; Iijima, T.; Yokokura, S.; Kawano, H.; Yamamoto, A.; Matsuda, K. Resorption of synthetic porous hydroxyapatite and replacement by newly formed bone. J. Orthop. Sci. 2001, 6, 444–447. [CrossRef]

Fujisawa, K.; Akita, K.; Fukuda, N.; Kamada, K.; Kudoh, T.; Ohe, G.; Mano, T.; Tsuru, K.; Ishikawa, K.; Miyamoto, Y. Compositional

and histological comparison of carbonate apatite fabricated by dissolution-precipitation reaction and Bio-Oss((R)). J. Mater. Sci.

Mater. Med. 2018, 29, 121. [CrossRef]

Kudoh, K.; Fukuda, N.; Kasugai, S.; Tachikawa, N.; Koyano, K.; Matsushita, Y.; Ogino, Y.; Ishikawa, K.; Miyamoto, Y. Maxillary

Sinus Floor Augmentation Using Low-Crystalline Carbonate Apatite Granules With Simultaneous Implant Installation: First-inHuman Clinical Trial. J. Oral Maxillofac. Surg. 2019, 77, 985.e1–985.e11. [CrossRef]

Ishikawa, K.; Kawachi, G.; Tsuru, K.; Yoshimoto, A. Fabrication of calcite blocks from gypsum blocks by compositional

transformation based on dissolution-precipitation reactions in sodium carbonate solution. Mater. Sci. Eng. C Mater. Biol. Appl.

2017, 72, 389–393. [CrossRef]

Lin, X.; Matsuya, S.; Nakagawa, M.; Terada, Y.; Ishikawa, K. Effect of molding pressure on fabrication of low-crystalline calcite

block. J. Mater. Sci Mater. Med. 2008, 19, 479–484. [CrossRef]

Materials 2022, 15, 8100

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

8 of 8

Wakae, H.; Takeuchi, A.; Udoh, K.; Matsuya, S.; Munar, M.L.; LeGeros, R.Z.; Nakasima, A.; Ishikawa, K. Fabrication of

macroporous carbonate apatite foam by hydrothermal conversion of alpha-tricalcium phosphate in carbonate solutions. J. Biomed.

Mater. Res. A 2008, 87, 957–963. [CrossRef] [PubMed]

Kukita, T.; Wada, N.; Kukita, A.; Kakimoto, T.; Sandra, F.; Toh, K.; Nagata, K.; Iijima, T.; Horiuchi, M.; Matsusaki, H.; et al.

RANKL-induced DC-STAMP is essential for osteoclastogenesis. J. Exp. Med. 2004, 200, 941–946. [CrossRef] [PubMed]

Watanabe, T.; Kukita, T.; Kukita, A.; Wada, N.; Toh, K.; Nagata, K.; Nomiyama, H.; Iijima, T. Direct stimulation of osteoclastogenesis by MIP-1alpha: Evidence obtained from studies using RAW264 cell clone highly responsive to RANKL. J. Endocrinol. 2004,

180, 193–201. [CrossRef]

Egashira, Y.; Atsuta, I.; Narimatsu, I.; Zhang, X.; Takahashi, R.; Koyano, K.; Ayukawa, Y. Effect of carbonate apatite as a bone

substitute on oral mucosal healing in a rat extraction socket: In vitro and in vivo analyses using carbonate apatite. Int. J. Implant.

Dent. 2022, 8, 11. [CrossRef]

Takemura, Y.; Moriyama, Y.; Ayukawa, Y.; Kurata, K.; Rakhmatia, Y.D.; Koyano, K. Mechanical loading induced osteocyte

apoptosis and connexin 43 expression in three-dimensional cell culture and dental implant model. J. Biomed. Mater. Res. A 2019,

107, 815–827. [CrossRef]

Moriyama, Y.; Ayukawa, Y.; Ogino, Y.; Atsuta, I.; Todo, M.; Takao, Y.; Koyano, K. Local application of fluvastatin improves

peri-implant bone quantity and mechanical properties: A rodent study. Acta Biomater. 2010, 6, 1610–1618. [CrossRef] [PubMed]

Atsuta, I.; Ayukawa, Y.; Furuhashi, A.; Narimatsu, I.; Kondo, R.; Oshiro, W.; Koyano, K. Epithelial sealing effectiveness against

titanium or zirconia implants surface. J. Biomed. Mater. Res. A 2019, 107, 1379–1385. [CrossRef]

Atsuta, I.; Yamaza, T.; Yoshinari, M.; Goto, T.; Kido, M.A.; Kagiya, T.; Mino, S.; Shimono, M.; Tanaka, T. Ultrastructural localization

of laminin-5 (gamma2 chain) in the rat peri-implant oral mucosa around a titanium-dental implant by immuno-electron

microscopy. Biomaterials 2005, 26, 6280–6287. [CrossRef]

Oshiro, W.; Ayukawa, Y.; Atsuta, I.; Furuhashi, A.; Yamazoe, J.; Kondo, R.; Sakaguchi, M.; Matsuura, Y.; Tsukiyama, Y.; Koyano, K.

Effects of CaCl2 hydrothermal treatment of titanium implant surfaces on early epithelial sealing. Colloids Surf. B Biointerfaces 2015,

131, 141–147. [CrossRef]

Tang, Y.; Wu, X.; Lei, W.; Pang, L.; Wan, C.; Shi, Z.; Zhao, L.; Nagy, T.R.; Peng, X.; Hu, J.; et al. TGF-beta1-induced migration of

bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 2009, 15, 757–765. [CrossRef]

Su, P.; Tian, Y.; Yang, C.; Ma, X.; Wang, X.; Pei, J.; Zhao, L.; Nagy, T.R.; Peng, X.; Hu, J.; et al. Mesenchymal Stem Cell Migration

during Bone Formation and Bone Diseases Therapy. Int. J. Mol. Sci. 2018, 19, 2343. [CrossRef] [PubMed]

Bigham-Sadegh, A.; Oryan, A. Basic concepts regarding fracture healing and the current options and future directions in managing

bone fractures. Int. Wound J. 2015, 12, 238–247. [CrossRef] [PubMed]

Papachristou, D.J.; Georgopoulos, S.; Giannoudis, P.V.; Panagiotopoulos, E. Insights into the Cellular and Molecular Mechanisms

That Govern the Fracture-Healing Process: A Narrative Review. J. Clin. Med. 2021, 10, 3554. [CrossRef] [PubMed]

Dahlin, C.; Linde, A.; Gottlow, J.; Nyman, S. Healing of bone defects by guided tissue regeneration. Plast. Reconstr. Surg. 1988, 81,

672–676. [CrossRef]

Mirhadi, S.; Ashwood, N.; Karagkevrekis, B. Factors influencing fracture healing. Trauma 2013, 15, 140–155. [CrossRef]

Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng.

2012, 40, 363–408. [CrossRef]

Roden, R.D., Jr. Principles of bone grafting. Oral Maxillofac. Surg. Clin. N. Am. 2010, 22, 295–300. [CrossRef]

Giannoudis, P.V.; Dinopoulos, H.; Tsiridis, E. Bone substitutes: An update. Injury 2005, 36 (Suppl. S3), S20-7. [CrossRef]

Niu, C.C.; Tsai, T.T.; Fu, T.S.; Lai, P.L.; Chen, L.H.; Chen, W.J. A comparison of posterolateral lumbar fusion comparing autograft,

autogenous laminectomy bone with bone marrow aspirate, and calcium sulphate with bone marrow aspirate: A prospective

randomized study. Spine 2009, 34, 2715–2719. [CrossRef]

Finkemeier, C.G. Bone-grafting and bone-graft substitutes. J. Bone Joint. Surg. Am. 2002, 84, 454–464. [CrossRef]

Garcia-Gareta, E.; Coathup, M.J.; Blunn, G.W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone

2015, 81, 112–121. [CrossRef]

Miron, R.J.; Sculean, A.; Shuang, Y.; Bosshardt, D.D.; Gruber, R.; Buser, D.; Chandad, F.; Zhang, Y. Osteoinductive potential of a

novel biphasic calcium phosphate bone graft in comparison with autographs, xenografts, and DFDBA. Clin Oral Implant. Res.

2016, 27, 668–675. [CrossRef]

Dvorak, M.M.; Siddiqua, A.; Ward, D.T.; Carter, D.H.; Dallas, S.L.; Nemeth, E.F.; Riccardi, D. Physiological changes in extracellular

calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc. Natl. Acad. Sci. USA

2004, 101, 5140–5145. [CrossRef]

Maeno, S.; Niki, Y.; Matsumoto, H.; Morioka, H.; Yatabe, T.; Funayama, A.; Toyama, Y.; Taguchi, T.; Tanaka, J. The effect of calcium

ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005, 26,

4847–4855. [CrossRef]

Hwang, S.Y.; Putney, J.W., Jr. Calcium signaling in osteoclasts. Biochim. Biophys. Acta 2011, 1813, 979–983. [CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る