リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「還元的ニトロン合成法の開発とその応用 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

還元的ニトロン合成法の開発とその応用 (本文)

片原, 聖矢 慶應義塾大学

2020.03.23

概要

1,3-双極子構造はその高い反応性から、有機合成化学において重要な反応剤として用いられている。特にニトロンは、オレフィンとの[3+2]環化付加反応によって窒素-酸素結合を有するヘテロ五員環化合物であるイソオキサゾリジンを生じるため、天然有機化合物の全合成研究を中心に重用されている。中でも、環状ニトロンは含窒素環状化合物の合成中間体として魅力的であり、その効率的な発生法が精力的に研究されている。

本論文では、合成に容易なアミド構造をニトロンへと変換する新たな分子変換反応を、アミドカルボニル基の還元反応によって実現した。また、生じたニトロンの高い反応性を用いた分子変換によって有用分子の構築を試みる。

この論文で使われている画像

参考文献

1. (a) Werner, K. M.; De Los Santos, J. M.; Weinreb, S. M.; Shang, M. A Convergent Stereoselective Synthesis of the Putative Structure of the Marine Alkaloid Lepadiformine via an Intramolecular Nitrone/1,3-Diene Dipolar Cycloaddition. J. Org. Chem. 1999, 64, 686–687. (b) Higo, T.; Ukegawa, T.; Yokoshima, S.; Fukuyama, T. Formal Synthesis of Sarain A: Intramolecular Cycloaddition of an Eight- Membered Cyclic Nitrone to Construct the 2-Azabicyclo[3.3.1]Nonane Framework. Angew. Chem. Int. Ed. 2015, 54, 7367–7370.(c) Brandi, A.; Cordero, F.; Querci, C. A Short Synthesis of (±)-Gephyrotoxin 223AB. J. Org. Chem. 1989, 54, 1748–1750.

2. (a) Staudinger, H.; Kreis, W.; Schilt, W. Über Die Addition von Halogenwasserstoff an Isopren. Helv. Chim. Acta 1922, 5, 743–756. (b) Murahashi, S.-I.; Mitsui, H.; Watanabe, T.; Zenki, S. The Reaction of N-Mono an N,N-Disubstituted Hydroxylamines with Palladium Catalyst. Tetrahedron Lett. 1983, 24, 1049–1052. (c) Mitsui, H.; Zenki, S.; Shiota, T.; Murahashi, S.-I. Tungstate Catalysed Oxidation of Secondary Amines with Hydrogen Peroxide. A Novel Transformation of Secondary Amines into Nitrones. J. Chem. Soc. Chem. Commun. 1984, 874–875. (d) Goti, A.; Cicchi, S.; Fedi, V.; Nannelli, L.; Brandi, A. Synthesis of Enantiopure 3-Substituted Pyrroline N-Oxides by Highly Regioselective Oxidation of the Parent Hydroxylamines: A Mechanistic Rationale. J. Org. Chem. 1997, 62, 3119–3125. (e) Ohtake, H.; Imada, Y.; Murahashi, S. I. Regioselective Synthesis of Nitrones by Decarboxylative Oxidation of N- Alkyl-α- Amino Acids and Application to the Synthesis of 1-Azabicyclic Alkaloids. Bull. Chem. Soc. Jpn. 1999, 72, 2737–2754.

3. (a) Smith, P. A. S.; Robertson, J. E. Some Factors Affecting the Site of Alkylation of Oxime Salts. J. Am. Chem. Soc. 1962, 84, 1197–1204. (b) Buehler, E. Alkylation of Syn- and Anti-Benzaldoximes. J. Org. Chem. 1967, 32, 261–265. (c) Schoenewaldt, E. F.; Kinnel, R. B.; Davis Paul. Improved Synthesis of Anti-Benzaldoxime. Concomitant Cleavage and Formylation of Nitrones. J. Org. Chem. 1968, 33, 4270– 4272. (c) Stockman, R. A. Two-Directional Synthesis. Part 1: A Short Formal Synthesis of (±)-Histrionicotoxin and (±)-Histrionicotoxin 235A. Tetrahedron Lett. 2000, 41, 9163–9165.

4. (a) Grigg, R.; Markandu, J.; Perrior, T.; Surendrakumar, S.; Warnock, W. J. X = Y - ZH Systems as Potential 1,3-Dipoles Part 35. Generation of Nitrones from Oximes. Class 3 Processes. Tandem Intramolecular Michael Addition (1,3-Azaprotio Cyclotransfer) - Intermolecular 1,3-Dipolar Cycloaddition Reactions. Tetrahedron 1992, 48, 6929–6952. (b) Hassner, A.; Maurya, R. A Route to Pyrrolizidines, Indolizidines and Quinolizidines via Intramolecular Oxime Olefin Cycloadditions. Tetrahedron Lett. 1989, 30, 2289–2292.

5. (a) Williams, G. M.; Roughley, S. D.; Davies, J. E.; Holmes, A. B.; Adams, J. P. Synthesis of (-)- Histrionicotoxin by a Tandem Process [5]. J. Am. Chem. Soc. 1999, 121, 4900–4901. (b) Davison, E. C.; Fox, M. E.; Holmes, A. B.; Roughley, S. D.; Smith, C. J.; Williams, G. M.; Davies, J. E.; Raithby, P. R.; Adams, J. P.; Forbes, I. T.; et al. Nitrone Dipolar Cycloaddition Routes to Piperidines and Indolizidines. Part 9. Formal Synthesis of (-)-Pinidine and Total Synthesis of (-)-Histrionicotoxin, (+)-Histrionicotoxin and (-)-Histrionicotoxin 235A. J. Chem. Soc. Perkin Trans. 1 2002, 1494–1514.

6. Warshaw, J. A.; Gallis, D. E.; Acken, B. J.; Gonzalez, O. J.; Crist, D. R. α-Heteroatom-Substituted Nitrones. Synthesis and Reactions of Acyclic .Alpha.-Alkoxynitrones. J. Org. Chem. 1989, 54, 1736– 1743.

7. (a) Lombardo, M.; Trombini, C. Nucleophilic Additions to Nitrones. Synthesis. 2000, 759–774. (b) Kita, Y.; Itoh, F.; Tamura, O.; Ke, Y. Y.; Tamura, Y. The Chemistry of O-Silylated Ketene Acetals: An Efficientstereocontrolled Synthesis of N-Benzoyl L-Daunosamine. Tetrahedron Lett. 1987, 28, 1431– 1434.

8. (a) Kinugasa, M.; Hashimoto, S. The Reactions of Copper(I) Phenylacetylide with Nitrones. J. Chem. Soc. Chem. Commun. 1972, 4, 466. (b) Thomas C. Malig, T. C.; Yu, D.; Hein, J. E. A Revised Mechanism for the Kinugasa Reaction J. Am. Chem. Soc. 2018, 140, 9167.

9. Volkov, A.; Tinnis, F.; Slagbrand, T.; Trillo, P.; Adolfsson, H. Chemoselective Reduction of Carboxamides. Chem. Soc. Rev. 2017, 45, 6685.

10. (a) Nahm, S.; Weinreb, S. M. N-Methoxy-N-Methylamides as Effective Acylating Agents. Tetrahedron Lett. 1981, 22, 3815–3818. (b) Spletstoser, J. T.; White, J. M.; Tunoori, A. R.; Georg, G. I. Mild and Selective Hydrozirconation of Amides to Aldehydes Using Cp2Zr(H)Cl: Scope and Mechanistic Insight. J. Am. Chem. Soc. 2007, 129, 3408–3419. (c) Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R.; Nagashima, H. Highly Efficient Synthesis of Aldenamines from Carboxamides by Iridium-Catalyzed Silane- Reduction/Dehydration under Mild Conditions. Chem. Commun. 2009, 1574–1576. (d) Tinnis, F.; Volkov, A.; Slagbrand, T.; Adolfsson, H. Chemoselective Reduction of Tertiary Amides under Thermal Control: Formation of Either Aldehydes or Amines. Angew. Chem. Int. Ed. 2016, 55, 4562–4566.

11. (a) Ullmann, F.; Bielecki, J. Ueber Synthesen in Der Biphenylreihe. Berichte der Dtsch. Chem. Gesellschaft 1901, 34, 2174–2185. (b) Ullmann, F.; Sponagel, P. Ueber Die Phenylirung von Phenolen. Berichte der Dtsch. Chem. Gesellschaft 1905, 38, 2211–2212. (c) Lv, X.; Bao, W. A β-Keto Ester as a Novel, Efficient, and Versatile Ligand for Copper(I)-Catalyzed C−N, C−O, and C−S Coupling Reactions. J. Org. Chem. 2007, 72, 3863–3867.

12. (a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. The Role of Chelating Diamine Ligands in the Goldberg Reaction: A Kinetic Study on the Copper-Catalyzed Amidation of Aryl Iodides. J. Am. Chem. Soc. 2005, 127, 4120–4121. (b) Kaddouri, H.; Vicente, V.; Ouali, A.; Ouazzani, F.; Taillefer, M. Copper- Catalyzed Arylation of Nucleophiles by Using Butadienylphosphines as Ligands: Mechanistic Insight. Angew. Chem. Int. Ed. 2009, 48, 333–336.

13. (a) Paul, F.; Patt, J.; Hartwig, J. F. Palladium-Catalyzed Formation of Carbon-Nitrogen Bonds. Reaction Intermediates and Catalyst Improvements in the Hetero Cross-Coupling of Aryl Halides and Tin Amides. J. Am. Chem. Soc. 1994, 116, 5969–5970. (b) Guram, A. S.; Buchwald, S. L. Palladium-Catalyzed Aromatic Animations with in Situ Generated Aminostannanes. J. Am. Chem. Soc. 1994, 116, 7901–7902. (c) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. Synthesis of Oxygen Heterocycles via a Palladium- Catalyzed C-O Bond-Forming Reaction. J. Am. Chem. Soc. 1996, 118, 10333–10334. (d) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. Palladium-Catalyzed Intermolecular Carbon-Oxygen Bond Formation: A New Synthesis of Aryl Ethers. J. Am. Chem. Soc. 1997, 119, 3395–3396.

14. (a) Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. Direct Observation of C-O Reductive Elimination from Palladium Aryl Alkoxide Complexes to Form Aryl Ethers. J. Am. Chem. Soc. 1997, 119, 6787–6795. (b) Widenhoefer, R. A.; Buchwald, S. L. Electronic Dependence of C-O Reductive Elimination from Palladium (Aryl)Neopentoxide Complexes. J. Am. Chem. Soc. 1998, 120, 6504–6511.

15. (a) Barton, D. H. R.; Finet, J.-P.; Khamsi, J. Metallic Copper Catalysis of -Arylation of Amines by Triarylbismuth Diacylates. Tetrahedron Lett. 1986, 27, 3615–3618. (b) Chan, D. M. T.; Monaco, K. L.; Wang, R. P.; Winters, M. P. New N- and O-Arylations with Phenylboronic Acids and Cupric Acetate. Tetrahedron Lett. 1998, 39, 2933–2936. (c) Evans, D. A.; Katz, J. L.; West, T. R. Synthesis of Diaryl Ethers through the Copper-Promoted Arylation of Phenols with Arylboronic Acids. An Expedient Synthesis of Thyroxine. Tetrahedron Lett. 1998, 39, 2937–2940. (d) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. New Aryl/Heteroaryl C-N Bond Cross-Coupling Reactions via Arylboronic Acid/Cupric Acetate Arylation. Tetrahedron Lett. 1998, 39, 2941–2944.

16. King, A. E.; Brunold, T. C.; Stahl, S. S. Mechanistic Study of Copper-Catalyzed Aerobic Oxidative Coupling of Arylboronic Esters and Methanol: Insights into an Organometallic Oxidase Reaction. J. Am. Chem. Soc. 2009, 131, 5044–5045.

17. Selected reviews: (a) E. Erdik and M. Ay, Chem. Rev., 1989, 89, 1947–1980. (b) G. Boche and J. C. W. Lohrenz, Chem. Rev., 2001, 101, 697–756. (c) P. Starkov, T. F. Jamison and I. Marek, Chem. Eur. J., 2015, 21, 5278–5300. (d) P. Starkov, T. F. Jamison and I. Marek, Chem. Eur. J., 2015, 21, 5278–5300.

18. (a) Schverdina, N. I.; Kotscheschkow, Z. J. Gen. Chem. USSR (Engl. Transl.) 1938, 8 ,1825; Chem. Zentrabl. 1940, I, 360. (b) Beak, P.; Kokko, B. J. A Modification of the Sheverdina-Kocheshkov Amination: The Use of Methoxyamine-Methyl Lithium as a Convenient Synthetic Equivalent for NH2+. J. Org. Chem. 1982, 47, 2822–2823.

19. (a) Berman, A. M.; Johnson, J. S. Copper-Catalyzed Electrophilic Amination of Diorganozinc Reagents. J. Am. Chem. Soc. 2004, 126, 5680–5681. (b) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Copper- Catalyzed Amination of Arylboronates with N,N-Dialkylhydroxylamines. Angew. Chem. Int. Ed. 2012, 51, 3642–3645. (c) Rucker, R. P.; Whittaker, A. M.; Dang, H.; Lalic, G. Synthesis of Tertiary Alkyl Amines from Terminal Alkenes: Copper-Catalyzed Amination of Alkyl Boranes. J. Am. Chem. Soc. 2012, 134, 6571–6574. (d) Fukami, Y.; Wada, T.; Meguro, T.; Chida, N.; Sato, T. Copper-Catalyzed Electrophilic Amination Using N-Methoxyamines. Org. Biomol. Chem. 2016, 14, 5486–5489.

20. (a) Khumtaveeporn, K.; Alper, H. Selective Rhodium-Catalyzed Insertion of Carbon Monoxide into the Nitrogen-Oxygen Bond of Isoxazolidines. New Reduction, Migration, and Rearrangement Reactions Catalyzed by Iridium Complexes. J. Org. Chem. 1995, 60, 8142–8147. (b) Yao, C.; Xiao, Z.; Liu, J.; Ning, X.-S.; Kang, Y. Ru-Catalyzed Rearrangement of N -Methyl Isoxazolidines to N –H 1,3-Oxazinanes: A Strategy of Self-Hydride Transferring Cleavage of N–O Bonds. Org. Lett. 2014, 16, 2498–2501. (c) Yao, C. Z.; Xiao, Z. F.; Ning, X. S.; Liu, J.; Zhang, X. W.; Kang, Y. B. Synthesis of Syn-1,3-Aminoalcohols via a Ru-Catalyzed N-Demethylative Rearrangement of Isoxazolidines and Its Application in a Three-Step Total Synthesis of HPA-12. Org. Lett. 2014, 16, 5824–5826. (d) Xiao, Z.; Yao, C.; Kang, Y. Ruthenium- Catalyzed Asymmetric N -Demethylative Rearrangement of Isoxazolidines and Its Application in the Asymmetric Total Syntheses of (−)-(1R,3S)-HPA-12 and (+)-(1S,3R)-HPA-12. Org. Lett. 2014, 16, 6512– 6514. (e) Suneel Kumar, C. V.; Ramana, C. V. Ru-Catalyzed Redox-Neutral Cleavage of the N–O Bond in Isoxazolidines: Isatogens to Pseudoindoxyls via a One-Pot [3 + 2]-Cycloaddition/N–O Cleavage. Org. Lett. 2015, 17, 2870–2873.

21. Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. The Role of Chelating Diamine Ligands in the Goldberg Reaction: A Kinetic Study on the Copper-Catalyzed Amidation of Aryl Iodides. J. Am. Chem. Soc. 2005, 127, 4120–4121.

22. Kepp, K. P. A Quantitative Scale of Oxophilicity and Thiophilicity. Inorg. Chem. 2016, 55, 9461–9470.

23. (a) Wender, P. A.; Croatt, M. P.; Witulski, B. New Reactions and Step Economy: The Total Synthesis of (±)-Salsolene Oxide Based on the Type II Transition Metal-Catalyzed Intramolecular [4+4] Cycloaddition. Tetrahedron 2006, 62, 7505–7511. (b) Wender, P. A.; Miller, B. L. Synthesis at the Molecular Frontier. Nature 2009, 460, 197–201.

24. Blackburn, S. N.; Haszeldine, R. N.; Parish, R. V.; Setchfield, J. H. Organosilicon Chemistry. J. Organomet. Chem. 1980, 192, 329–338.

25. (a) Brown, H. C.; Tsukamoto, A. The Reaction of 1-Acylaziridines with Lithium Aluminum Hydride—a New Aldehyde Synthesis. J. Am. Chem. Soc. 1961, 83, 2016–2017. (b) Brown, H. C.; Tsukamoto, A. Selective Reductions. I. The Partial Reduction of Tertiary Amides with Lithium Aluminum Hydride. A New Aldehyde Synthesis via the 1-Acylaziridines. J. Am. Chem. Soc. 1961, 83, 4549–4552.

26. (a) Houk, K. N.; Sims, J.; Watts, C. R.; Luskus, L. J. Origin of Reactivity, Regioselectivity, and Periselectivity in 1,3-Dipolar Cycloadditions. J. Am. Chem. Soc. 1973, 95, 7301–7315. (b) Burdisso, M.; Gandolfi, R.; Grünanger, P. Control of Regiochemistry in Nitrone Cycloadditions. Regioselectivity of the Reactions of Trisubstituted Nitrones with Electron-Deficient and Conjugated Dipolarophiles. Tetrahedron 1989, 45, 5579– 5594. (c) Tufariello, J. J.; Puglis, J. M. The α, α′-Dialkylation of Cyclic Amines. The Synthesis of Ant Venoms. Tetrahedron Lett. 1986, 27, 1489–1492.

27. Yanagita, Y.; Nakamura, H.; Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Direct Nucleophilic Addition to N- Alkoxyamides. Chem. Eur. J. 2013, 19, 678–684.

28. (a) Alford, E. J.; Hall, J. A.; Rogers, M. A. T. Aliphatic Hydroxylamines. Part IV. N- Hydroxyhexamethyleneimine. J. Chem. Soc. C, 1966, 1103–1107. (b) Imada, Y.; Okita, C.; Maeda, H.; Kishimoto, M.; Sugano, Y.; Kaneshiro, H.; Nishida, Y.; Kawamorita, S.; Komiya, N.; Naota, T. Ring- Expanding Metathesis Oligomerization of Cyclic Nitrones. European J. Org. Chem. 2014, 26, 5670–5674.

29. White, J. D.; Blakemore, P. R.; Korf, E. A.; Yokochi, A. F. T. Transannular Nitrone Cycloaddition. A Stereocontrolled Entry to the Spirocyclic Core of Pinnaic Acid. Org. Lett. 2001, 3, 413–415.

30. Shiina, I.; Ibuka, R.; Kubota, M. A New Condensation Reaction for the Synthesis of Carboxylic Esters from Nearly Equimolar Amounts of Carboxylic Acids and Alcohols Using 2-Methyl-6-Nitrobenzoic Anhydride. Chem. Lett. 2002, 31, 286–287.

31. Zhu, S.; Niljianskul, N.; Buchwald, S. L. Enantio- and Regioselective CuH-Catalyzed Hydroamination of Alkenes. J. Am. Chem. Soc. 2013, 135, 15746–15749.

32. (a) Gilman, H.; Adams, C. E. THE REACTION BETWEEN ORGANIC PEROXIDES AND ORGANOMAGNESIUM HALIDES. J. Am. Chem. Soc. 1925, 47, 2816–2821. (b) Willand-Charnley, R.; Puffer, B. W.; Dussault, P. H. Oxacycle Synthesis via Intramolecular Reaction of Carbanions and Peroxides. J. Am. Chem. Soc. 2014, 136, 5821–5823. (c) Kyasa, S. K.; Meier, R. N.; Pardini, R. A.; Truttmann, T. K.; Kuwata, K. T.; Dussault, P. H. Synthesis of Ethers via Reaction of Carbanions and Monoperoxyacetals. J. Org. Chem. 2015, 80, 12100–12114.

33. (a) Davis, F. A.; Vishwakarma, L. C.; Billmers, J. G.; Finn, J. Synthesis of A-Hydroxy Carbonyl Compounds (Acyloins): Direct Oxidation of Enolates Using 2-Sulfonyloxaziridines. J. Org. Chem. 1984, 49, 3241–3243. (b) Gao, H.; Zhou, Z.; Kwon, D.-H.; Coombs, J.; Jones, S.; Behnke, N. E.; Ess, D. H.; Kürti, L. Rapid Heteroatom Transfer to Arylmetals Utilizing Multifunctional Reagent Scaffolds. Nature Chem. 2016, 9, 681–688. (c) Javorskis, T.; Sriubaite, S.; Bagdžiunas, G.; Orentas, E. N-Protected 1,2- Oxazetidines as a Source of Electrophilic Oxygen: Straightforward Access to Benzomorpholines and Related Heterocycles by Using a Reactive Tether. Chem. Eur. J. 2015, 21, 9157–9164.

34. Casey, M.; Keaveney, C. M.; Walker, A. J. MIRC Reactions Using Sulfoxides and Synthesis of Dictyopterene A. Arkivoc 2002, 2002, 91–103.

35. Majetich, G.; Casares, A. M.; Chapman, D.; Behnke, M. Chemoselectivity in the Conjugate Addition of Allylsilane to Michael Acceptors. Tetrahedron Lett. 1983, 24, 1909–1912.

36. (a) Mohanty, S.; Roy, A. K.; Kiran, S. P.; Rafael, G. E.; Kumar, K. P. V.; Karmakar, A. C. Controlling the Exothermicity of O-Arylation by Evaporative Cooling during the Process Development of Fluoxetine Hydrochloride. Org. Process Res. Dev. 2014, 18, 875–885. (b) Bhandari, K.; Srivastava, S.; Shanker, G.; Nath, C. Substituted Propanolamines and Alkylamines Derived from Fluoxetine as Potent Appetite Suppressants☆. Bioorg. Med. Chem. 2005, 13, 1739–1747.

37. (a) G. E. Job and S. L. Buchwald, Org. Lett., 2002, 4, 3703–3706. (b) A. Shafir, P. A. Lichtor and S. L. Buchwald, J. Am. Chem. Soc., 2007, 129, 3490–3491. (c) G. O. Jones, P. Liu, K. N. Houk and S. L. Buchwald, J. Am. Chem. Soc., 2010, 132, 6205–6213. (d) H. Z. Yu, Y. Y. Jiang, Y. Fu and L. Liu, J. Am. Chem. Soc., 2010, 132, 18078–18091.

38. Jurkauskas, V.; Sadighi, J. P.; Buchwald, S. L. Conjugate Reduction of α,β-Unsaturated Carbonyl Compounds Catalyzed by a Copper Carbene Complex. Org. Lett. 2003, 5, 2417–2420.

39. Bernard, A. M.; Frongia, A.; Secci, F.; Delogu, G.; Ollivier, J.; Piras, P. P.; Salaün, J. Stereospecific Palladium(0)-Catalyzed Reduction of 2-Cyclobutylidenepropyl Esters. A Versatile Preparation of Diastereomeric Monoterpenoids: (±)-Fragranol and (±)-Grandisol. Tetrahedron 2003, 59, 9433–9440.

40. Utimoto, K.; Tamura, M.; Sisido, K. Preparation and Reaction of Cyclopropyltriphenylphosphonium Salt. Tetrahedron 1973, 29, 1169–1171.

41. Brandi, A.; Cordero, F. M.; De Sarlo, F.; Goti, A.; Guarna, A. New Synthesis of Azaheterocycles by Rearrangement of Isoxazoline-5-Spirocycloalkane Compounds. Synlett 1993, 1–8.

42. Zhang, Z.; Yu, Y.; Liebeskind, L. S. N -Amidation by Copper-Mediated Cross-Coupling of Organostannanes or Boronic Acids with O-Acetyl Hydroxamic Acids. Org. Lett. 2008, 10, 3005–3008.

43. (a) Zell, T.; Feierabend, M.; Halfter, B.; Radius, U. Stoichiometric and Catalytic C–Cl Activation of Aryl Chlorides Using an NHC-Stabilized Nickel(0) Complex. J. Organomet. Chem. 2011, 696, 1380–1387. (b) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179.

44. Gurung, S. K.; Thapa, S.; Kafle, A.; Dickie, D. A.; Giri, R. Copper-Catalyzed Suzuki–Miyaura Coupling of Arylboronate Esters: Transmetalation with (PN)CuF and Identification of Intermediates. Org. Lett. 2014, 16, 1264–1267.

45. Chaitanya, M.; Anbarasan, P. Lewis Acid/Brønsted Acid Controlled Pd(II)-Catalyzed Chemodivergent Functionalization of C(sp2)–H Bonds with N-(Arylthio)i(a)Mides. Org. Lett. 2018, 20, 3362–3366.

46. Saito, H.; Nogi, K.; Yorimitsu, H. Copper-Catalyzed Ring-Opening Silylation of Benzofurans with Disilane. Angew. Chem. Int. Ed. 2018, 57, 11030–11034.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る