リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「もやもや病における病態仮説two hit theoryの検証―遺伝学的異常および抗原プロセシング機構の異常の検討―」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

もやもや病における病態仮説two hit theoryの検証―遺伝学的異常および抗原プロセシング機構の異常の検討―

田代 亮介 東北大学

2020.03.25

概要

【背景】
もやもや病は頭蓋内内頚動脈終末部の狭窄をきたし、側副⾎⾏路としての脳底部もやもや⾎管の増⽣を特徴とする脳⾎管疾患である。⽐較的稀な疾患であるが、⼩児・若年成⼈の脳卒中の原因疾患である。その病態は未解明であり、疾患感受性遺伝⼦ ring finger protein 213 (RNF213)等の遺伝学的要因、⾎管内⽪細胞・⾎管形態の異常に加え、感染・放射線等の環境要因が重なって発症する two hit theory が提唱されている。慢性進⾏性の病態であり、⾃⼰免疫疾患との併発が多く、慢性炎症を基盤とする病態と考えられることから、本研究ではもやもや病患者における human leukocyte antigen (HLA)遺伝⼦の異常(研究 1)、および疾患感受性遺伝⼦として同定された RNF213 遺伝⼦の⾎管病変との関連(研究 2)および免疫機構における役割(研究 3)を明らかにすることを⽬的とした。

【⽅法】
研究 1: 超⾼解像度 DNA タイピング法を⽤いた次世代シークエンシングによりもやもや病患者 136 例の HLA クラス 1 およびクラス 2 (HLA-A, HLA-B, HLA- C, HLA-DRB1, HLA-DQB1, HLA-DPB1) を決定した。また、expectation maximization algorithm を⽤いてハプロタイプ推定を⾏なった。さらに、HLAアリルと臨床所⾒の関連を解析した。

研究 2: もやもや病患者 58 例、椎⾻動脈解離患者 24 例、健常者 48 例の RNF213 遺伝⼦多型 c.14576G>A を解析した。

研究 3: Rnf213 遺伝⼦ノックアウト(Rnf213-KO)マウス、ヒト RNF213 遺伝⼦多型 c.14576G>A のオーソログを相同部位に挿⼊した Rnf213 遺伝⼦ノックイン(Rnf213-KI)マウス⾻髄由来樹状細胞によるエンドサイトーシスおよび抗原プロセシング、抗原特異的 CD4 陽性 T 細胞の活性化および増殖能を評価した。

【結果】
研究 1:⽇本⼈もやもや病では HLA-DRB1*04:10 アリル(アリル頻度 もやもや病患者 4.77% vs コントロール 1.47%; p = 1.7 x 10-3; オッズ⽐ 3.35)、HLA- DRB1*04:10-DQB1*04:02 ハプロタイプ(ハプロタイプ頻度 もやもや病患者 4.41% vs コントロール 1.35%; p = 2.0 x 10-3; オッズ⽐ 3.37)の頻度が有意に⾼かった。また、HLA-DRB1:04:10 を有するもやもや病患者では甲状腺疾患の併発が有意に多かった。

研究 2: RNF213 遺伝⼦多型 c.14576G>A を 69%(40/58)のもやもや病患者で認めたのに対して、椎⾻動脈解離患者では 0% (0/24)と RNF213 遺伝⼦多型 c.14576G>A を有する患者が少なかった(p < 0.001)。

研究 3:Rnf213-KO、Rnf213-KI マウス 樹状細胞では抗原のエンドサイトーシス能の低下、抗原蛋⽩質分解能の低下、抗原特異的 CD4 陽性T 細胞活性化能および増殖能の低下を認めた。

【結論】
( 1 ) ⽇本⼈もやもや病では HLA-DRB1*04:10 アリル、HLA- DRB1*04:10-DQB1*04:02 ハプロタイプの頻度が有意に⾼く、( 2) HLA- DRB1*04:10 アリルは甲状腺疾患併発と関連した。また、RNF213 遺伝⼦は、(3)椎⾻動脈解離との関連は低く、もやもや病との関連が強いこと、(4) RNF213 異常により抗原プロセシング能の低下、抗原特異的 T 細胞応答が低下することが明らかとなった。さらに、(5)ヒト RNF213 遺伝⼦多型 c.14576G>Aのオーソログを強制発現した Rnf213 ノックインマウスは Rnf213 ⽋損マウスと類似した表現型を⽰し、RNF213 遺伝⼦多型 c.14576G>A は機能喪失型変異であることが⽰唆された。上記結果より、RNF213 遺伝⼦異常に起因する抗原プロセシング機構の異常を基盤として、HLA-DRB1*04:10 と関連する⾃⼰免疫応答や感染等の⼆次的要因が加わることで前⽅循環系を主体とする⾎管狭窄性・閉塞性病変であるもやもや病の発症に⾄る可能性が⽰唆された。

この論文で使われている画像

参考文献

1. Suzuki J, Takaku A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol 20: 288-299, 1969.

2. Tominaga T, Suzuki N, Miyamoto S, Koizumi A, Kuroda S, Takahashi Jun C, et al. [Reccomendations for the management of moyamoya disease: a statement from research committee on spontaneous occlusion of the circle of Willis (Moyamoya disease) [2nd Edition]]. Surgery Cerebral Stroke 46:1-24, 2018 (Jpn).

3. Kamada F, Aoki Y, Narisawa A, et al. A genome-wide association study identifies RNF213 as the first moyamoya disease gene. J Hum Genet 56:34-40, 2011

4. Liu W, Morito D, Takashima S, et al. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One 6:e22452, 2011

5. Miyatake S, Miyake N, Touho H, et al. Homozygous c.14576G>A variant of RNF213 predicts early-onset and severe form of moyamoya disease. Neurology 78; 803-10, 2012.

6. Komiyama M. Moyamoya disease is a progressive occlusive arteriopathy of the primitive internal carotid artery. Interv Neuroradiol 9: 39-45, 2003.

7. Jung KH, Chu K, Lee ST, et al. Circulating endothelial progenitor cells as a pathogenic marker of moyamoya disease. J Cerebr Blood Flow Metab 28;1795-803, 2008.

8. Kang HS, Kim JH, Phi JH, et al. Plasma matrix metalloproteinases, cytokines and angiogenic factors in moyamoya disease. J Neurol Neurosurg Psychiatry 81:673-8, 2010.

9. Blecharx-Lang KG, Prinz V, Burek M, et al. Gelatinolytic activity of autocrine matrix metalloproteinase-9 leads to endothelial de-rearrangement in moyamoya disease. J Cereb Blood Flow Metab 2018; 38; 1940-1953.

10. Fujimura M, Sonobe S, Nishijima Y, et al. Genetics and biomarkers of moyamoya disease: Siginificance of RNF213 as a susceptibility gene. J Stoke 16:65-72, 2014.

11. Houkin K, Ito M, Sugiyama T, et al. Review of past research and current concepts on the etiology of moyamoya disease. Neurol Med Chir (Tokyo) 52: 267-77, 2012.

12. Archol As, Guzman R, Lee M, et al. Pathophysiology and genetic factors in moyamoya disease. Neurosurg Focus 26:e4, 2009.

13. Tatekawa Y, Umezawa T, Ueno Y, et al. Pathological and immunohistochemical findings of an autopsy case of adult moyamoya disease. Neuropathology 24: 236- 242, 2004.

14. Takagi Y, Kikuta K, Nozaki K, et al. Histopathological features of middle cerebral arteries from patients treated for moyamoya disease. Neurol Med Chir (Tokyo) 47:1- 7, 2007.

15. Takagi Y, Hermanto Y, Takahashi JC, et al. Histopathological characteristics of distal middle cerebral artery in adult and pediatric patients with moyamoya disease. Neurol Med Chir (Tokyo) 56: 345-349, 2016.

16. Bower RS, Mallory GW, Nwojo M,et al. Moyamoya disease in primarily white, midwestern US population: Increased prevalence of autoimmune disease. Stroke 44:1997-1999, 2013

17. Chen BJ, Liu Y, Zhou LX, et al. Increased prevalence of autoimmune disease in patient with unilateral compared with bilateral moyamoya disease. J Neurosurg 124:1215-1220, 2016

18. Aoyagi M, Ogami K, Matsuchima Y, et al. Human leukocyte antigen in patients with moyamoya disease. Stroke 26:415-417, 1995.

19. Inoue TK, Ikezaki K, Sasazuki T, et al. Analysis of class 2 genes of human leukocyte antigen in patients with moyamoya disease. Clin Neurol Neurosurg 99 (Suppl 2): S234-7, 1997.

20. Han H, Pyo CW, Yoo DS, Huh PW, Cho KS, Kim DS. Associations of moyamoya patients with HLA class 1 and class II alleles in the Korean population. J Korean Med Sci 18:876-90, 2003.

21. Hong SH, Wang KC, Kim SK, et al. Association of HLA-DR and -DQ genes with familial moyamoya disease in Koreans. J Koran Neurosurg Soc 46:558-563, 2009.

22. Kraemer M, Horn PA, Roder C, et al. Analysis of human leukocyte antigen genes in Caucasian patients with idiopathic moyamoya angiopathy. Acta Neurochir (Wien) 154:445-454, 2012.

23. Fujimura M, Fujimura T, Kakizaki A, Sato-Maeda N, Niizuma K, Tomata Y, et al: Increased serum production of soluble CD163 and CXCL5 in patients with moyamoya disease: Involvement of intrinsic immune reaction in its pathogenesis. Brain Res 1679:39-44, 2018.

24. Kanoke A, Fujimura M, Niizuma K, et al. Temporal profile of magnetic resonance angiography and decrease ratio of regulatory T cells after immunological adjuvant administration to mice lacking RNF213, a susceptibility gene for moyamoya disease. Brain Res 2016; 1642: 1-9.

25. Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol 18:325-339, 2018.

26. Hosomichi K, Shiina T, Tajima A, et al. The impact of next-generation sequencing technologies on HLA research. J Hum Genet 60: 665-673, 2015.

27. Shiina T, Suzuki S, Kulski JK,et al. Super high resolution for single molecule-based typing of classical HLA loci using Ion Torrent PGM. Methods in molecular Biology 1802:115-133, 2018.

28. Ohkubo K, Sakai Y, Inoue H, et al. Moyamoya disease susceptibility gene RNF213 links inflammatory and angiogenic signals in endothelial cells. Sci Rep 5: 13191, 2015.

29. Kobayashi H, Matsuda T, Hitomi T, et al. Biochemical and functional characterization of RNF213 (Mysterin) R4810K, a susceptibility mutation of moyamoya disease, in angiogenesis in vitro and in vivo. J Am Heart Assoc 4:e002146, 2015.

30. Bahn RS, Iorio C, Marcotte R, et al. PTP1B controls non-mitochondrial consumption by regulating RNF213 to promote tumor survival during hypoxia. Nat Cell Biol 18:803-813, 2016.

31. Hitomi T, Habu T, Kobayashi H, et al. The moyamoya disease susceptibility variant RNF213 R4810K (rs11275431) induces genomic instability by mitotic abnormality. Biochem Biophys Rs Coomun 439:419-26, 2013.

32. Hitomi T, Habu T, Kobayashi H, et al. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem-cell-derived vascular endothelial cells from moyamoya patients. Biochem Biophys Res Commun 438:13-9, 2013.

33. Kanoke A, Fujimura M, Niizuma K, et al. Temporal profile of the vascular anatomy evaluated by 9.4T-tesla magnetic resonance angiography and histological analysis in mice with the R4859K mutation of RNF213, the susceptibility gene for moyamoya disease. Brain Res 1624: 497-505, 2015.

34. Sonobe S, Fujimura M, Niizuma K, et al. Temporal prfile of the vascular anatomy evaluated by 9.4-T magnetic resonance angiography and histopathological analysis in mice lacking RNF213: a susceptibility gene for moyamoya disease. Brain Res 1552; 64-71, 2014.

35. Miyawaki S, Imai H, Shimizu H, et al. Genetic variant RNF213 c.14576G>A in various phenotypes of intracranial major artery stenosis/occlusion. Stroke 44:2894- 97, 2013.

36. Morimoto T, Minehary Y, Ono K, et al. Significant association of RNF213 p.R4810K, a moyamoya susceptibility variant, with coronary artery disease. PLoS One 12: e0175649, 2017.

37. Chang SA, Song JS, Park TK, et al. Nonsyndromic peripheral pulmonary artery stenosis is associated with homozygositu of RNF213 p.Arg4810Lys regardless of co-occurrence of moyamoya disease. Chest 153:404-413, 2018.

38. Komiyama M. Cardio-cephalic neural crest syndrome: A novel hypothesis of vascular neurocristopathy. Interv Neuroradiol 23:572-576, 2017.

39. Jiang X, cheng ZJ. The role of ubiquitylation in immune defense and pathogen invasion. Nat Rev Immunol 12: 35-48, 2011.

40. Waleseng E, Furuta K, Bosch B, et al. Ubiquitination regulates MHC class II- peptide complex retention and degradation in dendritic cells. Proc Natl Acad Sci USA 107: 20465-20470, 2010.

41. Baravalle G, Park H, McSweeney M, et al. Ubiquitination of CD86 is a key mehchanism in regulating antigen presentation by dendritic cells. J Immunol 187:2966-2973, 2011.

42. Corocoran K, Jabbour M, Bhagwandin C, et al. Ubiquitin-mediated regulation of cd86 protein expression by the ubiquitin ligase membrane-associated ring-ch-1 (march1). J Biol Chem 286:37168-37180, 2011.

43. Tze LE, Horikawa K, Domachenz H, et al. CD83 increased MHC II and CD86 on dendritic cells by opposing IL-10-driven MARCH1-mediated ubiquitination and degradation. J Exp Med 208:149-165, 2011.

44. Ohmura-Hoshino M, Matsuki Y, et al. Inhibition of MHC class II expression and immune responses by c-MIR. J Immunol 177:341-354, 2006.

45. Kitaura Y, Jang IK, Wang Y, et al. Control of the B cell-intrinsic tolerance programs by ubiquitin ligases Cbl and Cbl-b. Immunity 26:567-578, 2007.

46. Katere B, Rosa S, Drake JR. The Syk-binding ubiquitin ligase c-Cbl mediates signaling-dependent B cell receptor ubiquitination and B cell receptor-mediated antigen processing and presentation. J Biol Chem 287:16636-16644, 2012.

47. Elliott MR, Ravichandran KS. Pallbearer and friends: leading a hand in apoptotic cell clearance. Trends Cell Biol 18:95-97, 2008.

48. Silva E, Au-Yueng HW, Van Goethem E, et al. Requirement for a drosophia Er- ubiquitin ligase in phagocytosis of apoptotic cells. Immunity 27:585-59, 2007.

49. Duan L, Wei L, Tian Y, et al. Novel susceptibility loci for moyamoya disease revealed by a genome-wide association study. Stroke 49:11-18, 2018

50. Itabashi R, Mori E, Furui E, et al. A dilated surface appearance on basiparallel anatomic scanning-magnetic resonance imaging is a useful tool for the diagnosis of spontaneous vertebral artery dissection in lateral medullary infarction. J Stroke Cerebrovasc Dis 23: 805-810, 2014.

51. Ueta M, Kannabiran C, Wakamatsu TH, et al. Tran-ethnic study confirmed independent associations of HLA-A*02:06 and HLA-B*44:03 with cold medicine-related Stevens-Johnson syndrome with severe ocular surface complications. Sci Rep 4:e5891, 2014.

52. Yasunami M, Nakamura H, Tokunaga K, et al. Principal contribution of HLA-DQ alleles, DQB1*06:04 and DQB1*03:01, to disease resistance against primary biliary cholangitis in a Japanese population. Sci Rep 7:e11093, 2017.

53. Pappas DJ, Marin W, Hollenbach JA, et al. Bridging immunogenomic data analysis workflow gaps (bigdawg): an integrated case-control analysis pipeline. Hum Immunol 77:283-287, 2016.

54. Lewontin RC. The interaction of selection and linkage. I General considerations; Heterotic models. Genetics 49;49-67, 1964.

55. Excoffier L, Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12:921-927, 1995.

56. Endo H, Fujimura M, Niizuma K, et al. Efficacy of revascularization surgery for moyamoya syndrome associated with Graves’ disease. Neurol Med Chir (Tokyo) 50:977-983, 2010.

57. Ahn JH, Jeon JP, Ki JE, et al. Association of hyperthyroidism an thyroid autoantibodies with moyamoya disease and its stroke events: a population-based case-control study and meta-analysis. Neurol Med Chir (Tokyo) 15:116-123, 2018.

58. Kim SJ, Heo KG, Shin HY, Bang OY, Kim GM, Chung CS, et al. Association of thyroid autoantibodies with moyamoya-type cerebrovascular disease: a prospective study. Stroke 1:173-176, 2010.

59. Sasazuki T, Inoko H, Morishima S, et al. Gene map of the HLA region, Graves’ disease and Hashimoto thyroiditis and hematopoietic stem cell transplantation. Advances in immunology 129:175-249, 2016.

60. Zeitlin AA, Heward JM, Newby PR, et al. Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to graves’ disease. Genes Immun 9:358-363, 2008.

61. Nakabayashi K, Tajima A, Yamamoto K, et al. Identification of independent risk loci for Graves’ disease within the MHC in the Japanese population. J Hum Genet 56:772-778, 2011.

62. Ueda S, Oryoji D, Yamamoto K, et al. Analysis of HLA class Ⅱ genes in Japanese autoimmune thyroid disease and their epistasis. J Clin Endocrinol Metab 99:e379- 383, 2014.

63. Shindo Y, Inoko H, Yamamoto T, et al. HLA-DRB1typing of Vogt-Koyanagi- Harada’s disease by PCR-RFLP and the strong association with DRB1*0405 and DRB1*0410. Br J Opthalmol 78:223-6, 1994.

64. Nomura S, Matsuzaki T, Ozaki Y, et al. Clinical significance of HLA-DRB1*0410 in Japanese patients with idiopathic thrombocytopenic purpura. Blood 15:3616-22, 1998.

65. Kim YJ, Lee JK, Ahn SH, et al. Nonatherosclerotic isolated middle cerebral artery disease may be early manifestation of moyamoya disease. Stroke 47:2229-2235, 2016.

66. Kim JS, LeeHB, Kwon HS.RNF213 polymorphism in intracranial artery dissection. J Stroke, 20: 404-406, 2018.

67. Shinya Y, Miyawaki S, Imai H, et al. Genetic analysis of Ring Finger Protein 213 (RNF213) c.14576G>A in intracranial atherosclerosis of the anterior and posterior circulations. J Stroke Cerebrovasc Dis 26: 2638-2644, 2017.

68. Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 15:203-16, 2015.

69. Chung JW, Kim DH, Oh MJ, et al. Cav-1 (Caveolin-1) and arterial remodeling n adult moyamoya disease. Stroke 49:2597-2604, 2018.

70. Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis Primers 2:16039, 2016.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る